07/11/2019 Lecture+8.+Files+processing

Introduction to programming.

Lecture 8: File processing

Lecturer : Xavier Parent xavier.parent@uni.lu

Paths

Working with files and interacting with the file system are important for many different reasons. The simplest
cases may involve only reading or writing files, but sometimes more complex tasks are at hand. Maybe you
need to list all files in a directory of a given type, find the parent directory of a given file, or create a unique
file name that does not already exist.

A prerequisite of all this is the ability to handle paths. A path is the address where the file is stored.

Here we only give basic information to access a file from a .py file anywhere on your computer (provided that
you actually have the authorization to access the said file).

Since paths are, for obvious reasons, specifically formated strings, you need to use a module to deal with
these objects. This module is called pathlib. The main class is called Path. This is what you usually
need.

In []:

from pathlib import Path

Then, a path can be specified by calling Path(stringdirect) where stringdirect is a string containing
the address to a directory.

Interest of pathlib

One of programming’s little annoyances is that Microsoft Windows uses a backslash character between
folder names where other OS uses a forward slash. Pathlib was introduced in version 3 in order to handle
this incongruity. You pass a path or filename into a new Path() object using forward slashes and it handles
the rest.

The Path() object will convert forward slashes into the correct kind of slash for the current operating system.
Nice! If you want to add on to the path, you can use the / operator directly in your code.

In []:

p=Path('/Desktop")

print(p)

g=Path('notsocorrectlyformatted**address')# You don't really need it to be a path "per
se”

print(q)

file:///C:/Users/xav/Downloads/Lecture+8.+Files+processing.html 112

07/11/2019 Lecture+8.+Files+processing

In []:

#It 1s possible to add a further sub-directory to a path.
p=p/'Introduction_To_Programming’
print(p)

In []:

from pathlib import Path, PureWindowsPath

p = Path("source_data/text_files/raw_data.txt")
Convert path to Windows format

path_on windows = PureWindowsPath(p)
print(path_on_windows)

prints "source data\text files\raw data.txt"

Some typical directories: cwd, home, root and parent

» current working directory

» home directory (created for you when you first logged in)
« root directory (at the top level of the directory)

« parent directory

In []:

#p=Path.cwd() # The "cwd" method returns the Path of the current working directory
#p = Path(".") # dot means "this directory"”

#p=Path("..") # dot dot means"the parent direcotry”

p=Path('/") # root directory

print(p)

In []:

#Path.home() #Home directory
p=Path.home()/"'momo"

print(p)

Basic use of pathlib

« list sub-directories and files

« list all the files with a given extension in a directory

» navigate inside a directory tree

« query path properties (does a path exist?)

« open a file

» create/delete a directory (for deletion, the directory must be empty)
» delete a file or a symbolic link

» convert a path-object to a string

file:///C:/Users/xav/Downloads/Lecture+8.+Files+processing.html 2/12

07/11/2019 Lecture+8.+Files+processing

rmdir

A methods that removes the directory for the given path. A security has been added to this method, to
remove a directory, the directory must be empty. It raises an Error if the file cannot be found.

In []:

p = Path(".") # dot means "this directory"”
[x for x in p.iterdir()]

In []:

glob(pattern) returns an iterator containing all paths whose format follows the patte
rn given

A pattern is always specified with a *

p=Path.home()/'Desktop/"'

[x for x in list(p.glob('*.txt"'))]

In[]:

navigating inside a tree directory

p = Path("/etc")
qg=p / "init.d" / "reboot™
print(q)

In []:

checking if a path exists

p=Path('Nonexistingpath') # I am creating an object path for a path that does not exist
print(p.exists()) # Use the 'exists' method to make sure that a path actually leads so
mewhere

p=Path.home()/'Desktop' # Some path that exists

print(p.exists()) # Okay

In []:

asking 1f a path leads to a directory or a file

p=Path.home()/'Desktop’
print("\"the path {} is pointing to a directory \" : {}".format(p,p.is_dir()))
print("\"the path {} is pointing to a file \" : {}".format(p,p.is_file()))
p=p /'Introduction_To_Programming'/'Homeworkl.pdf' # For this to work,

you need to have this path availab
Le on your computer
print("\"the path {} is pointing to a directory \" : {}".format(p,p.is_dir()))
print("\"the path {} is pointing to a file \" : {}".format(p,p.is_file()))

In []:

opening a file

with p.open() as f:
f.readline()

file:///C:/Users/xav/Downloads/Lecture+8.+Files+processing.html 3/12

07/11/2019 Lecture+8.+Files+processing

In []:

p=Path.home()/'Desktop/Nowitexists/Test"
print(p.exists())

p.mkdir() # Creates a directory at a given address,
print(p.exists())

In []:

p.mkdir() # prints an Error message if the directory already exists...

In []:

remove (empty) dir
p=Path.home()/'Desktop/Nowitexists/Test'
p.rmdir()

In []:

delete sumbolic Link or file Ln -s bible.txt myfile
p=Path.home()/'Desktop/bible.txt"’
p.unlink()

In []:

#parts 1is an attribute of a path containing all upper directories of the path given
p.parts

In []:
#convert a path-object to a string

p=Path.home()/'Desktop/Nowitexists/Test"
str(p)

In []:

convert a path-object to a string formatted for the present 0S
import os
from pathlib import Path

c = str(Path("/")/" "test")
os.system("sudo mkdir {c}")

Manipulating files
2 extra modules of interest:

e 0S.
« shutil

They have many features other than those covered in this lecture, in particular os

file:///C:/Users/xav/Downloads/Lecture+8.+Files+processing.html 4/12

07/11/2019 Lecture+8.+Files+processing

In []:

import os
import shutil

Basic use of os

« delete a file or folder
+ rename file
¢ move file

Basic use of shutil

» copy file from one directory to the other

There are different methods to copy a file with shutil : copy, copy2 and copyfile. In any case the two
arguments of these copy functions are an original path identifying the file to be copied and a path where the
copy should go. In copy or copy2 the goal path can either point toward an existing directory (in which
case the copied file will go into this directory and have the same name as the original file's one) or point
toward a maybe non-existing file in an existing directory in which case the copied file will be given the name
of the maybe non-existing file. With copyfile, the second argument cannot be a path for a directory.

The difference between copy and copy?2 is that the second copy, as much as possible, the metadata as
well. When you don't know which one to use, just use copy2.

copy?2 is the same as the copy function except it copies the file metadata with the file. The metadata
includes the permission bits, last access time, last modification time, and flags.

In []:

from pathlib import Path

import os

p=Path.home()/'Desktop/Int2Prog’

#os.rename(p/ 'HomeworR2.pdf',p/ 'Homework1000.pdf ') # rename file

#os.rename(p/ 'Homework1000.pdf',p/ 'Int2Prog'/ 'Homework1000.pdf ')## move the file
#os.mkdir(p/'fakedir") # create a folder

#[x for x in p.1iterdir()]

os.rename(p/'fakedir', p/'fakedir2") # rename a folder

[x for x in p.iterdir()]

In []:

os.rename(p/ 'Homework2.pdf',p/"'Homeworkl1000.pdf') # Change a name

In []:

os.rename(p/ 'Homework1000.pdf',p/ 'Introduction_To_Programming'/'Homework1000.pdf')# mov
e the file

In []:

import shutil

file:///C:/Users/xav/Downloads/Lecture+8.+Files+processing.html

5/12

07/11/2019 Lecture+8.+Files+processing

shutil.copy2(p/'Introduction_To_Programming'/'Homework1000.pdf,p)

Open and close afile

Once afile f is closed, f is still assigned but you cannot use the file anymore, to do it, you need to reopen it
again. The reason is clear, while the file f is closed it only uses as much memory as needed to specify the
path to the file but when the file is open the memory you use is as big as the file is. In particular, you will have
an Error message if you attempt to open a file which is twice bigger as what your session is authorized to
use.

Let us say that leaving open many files is a very bad practice since it will have a bad influence on the
efficiency of your program. The Python documentation highlights a specific command to make sure that you
only open a file when you need it. The command is with. It is called a "context manager". The file is
automatically closed when you exist the block. This helpt to circumvent memory issues.

Opening a file

Command 1 : file = open(path-to-filename, 'mode’, 'encoding')
Command 2 : with open(path-to-filename, 'mode’, 'encoding') as file:
Remarks:

« The mode argument is optional; 'r' (see below) will be assumed if it's omitted.

» The default encoding for Python source code is UTF-8. If no encoding is specified, then the defult one is
used.

« With command 1, the file must be closed explicitily: file.close()

« Command 2 does not require this.

Available access modes

r: Opens the file in read-only mode. Starts reading from the beginning of the file and is the default mode

for the open() function.

« rb: Opens the file as read-only in binary format and starts reading from the beginning of the file. While
binary format can be used for different purposes, it is usually used when dealing with things like images,
videos, etc.

» r: Opens the file in read-only mode. Starts reading from the beginning of the file and is the default mode
for the open() function.

» rb: Opens the file as read-only in binary format and starts reading from the beginning of the file. While
binary format can be used for different purposes, it is usually used when dealing with things like images,
videos, etc.

« r+: Opens a file for reading and writing, placing the pointer at the beginning of the file.

« w: Opens in write-only mode. The pointer is placed at the beginning of the file and this will overwrite any
existing file with the same name. It will create a new file if one with the same name doesn't exist.

« wb: Opens a write-only file in binary mode.

file:///C:/Users/xav/Downloads/Lecture+8.+Files+processing.html 6/12

07/11/2019 Lecture+8.+Files+processing

Available access modes (con't)

» w+: Opens a file for writing and reading.

» wb+: Opens a file for writing and reading in binary mode.

« a: Opens a file for appending new information to it. The pointer is placed at the end of the file. A new file
is created if one with the same name doesn't exist.

» ab: Opens a file for appending in binary mode.

» a+: Opens a file for both appending and reading.

» ab+: Opens a file for both appending and reading in binary mode.

The file Object Attributes

Once a file is opened and you have one file object, you can get various information related to that file. Here is
a list of all the attributes related to a file object

« file.closed: return true if the file is closed
« file.mode: returns access mode with which file was opened.
« file.mode: returns access mode with which file was opened.

In []:

opening a file
p=Path.home()/'Desktop/Nowitexists/"'
print(p)

f=open(p/'trash.txt', 'r') #This creates a variable f which "contains" the specified fi
Le
In []:

print(type(f))

In []:

print(f.read())#You can do many things with your file this is what we are going to see
next

In[]:

f.close()# close the file

f.closed # Ask 1if the file 1s closed

In []:

f.read()

In []:

p=Path.home()/'Desktop/Nowitexists/"'
with open(p/'trash.txt', 'r') as f:
print(f.read()) #Do whatever you want with your file : the file is open
f.closed #then the file is closed
#As we can see, the file 1is only open in the 1indented block.

file:///C:/Users/xav/Downloads/Lecture+8.+Files+processing.html 7712

07/11/2019 Lecture+8.+Files+processing

Text files versus binary files

As we have mentioned before you can either consider your files as text files or binary files. This is not an
exhaustive list but here are some extensions that you should consider to be openable as text files :

« python files .py
« textfiles .txt
« LaTeX files .tex

By opening these files as text files, you will directly see the text written in it. Be careful with problems of
endocage though especially if it is not in utf-8.

If you don't really know if your file should be read as a text file, it probably means that you should read it as a
binary files. This is definitely not an exhaustive list but make sure you don't write on .jpg, .png or .pdf files as
a text files, you will get an Error message.

Warning : modifying a binary file is a very delicate operation. Modifying a picture to make another
picture reauires a particular knowledae on how the pbicture is encoded.

All files (even text files) are encoded as binary files. Depending on wether you want your file to encode a
music, a picture, a text, a video ; the binary file will be radically different. Text files end up being very simple
binary files. However, other kinds of files are encoded in a very specific way so that if you add a random
binary string at the end of it, you will end up with a non-readable file that will be recognized as corrupted by
the software you use to read it.

Of course there are ways to temper with binary files of any source but you need to do it carefully. Next lecture
will be on this particular topic.

Just remember as a general law that files which are not meant to be read/written as text files are most
probably using very particular enconding. For the rest of this lecture we will only be interested in text files.

In []:

In []:

p=Path.home()/'Desktop/Int2Prog/"
#with open(p/'dummy.txt’', 'r+') as f:
f.write('929838")

print(f.read())

with open(p/'test.jpg', 'r+b') as f:
f.write(b'929838') #Remark that b'....' means bytes string, a particular type
#to be used when you are writing on f1i
les as bynary files.
print(f.read(100))

file:///C:/Users/xav/Downloads/Lecture+8.+Files+processing.html 8/12

07/11/2019 Lecture+8.+Files+processing

In []:

with open(p/'dummy.txt','w') as f:

f.write('This is about everything I am willing to write')#Write on a file
bytedata=bytes(b'This is about everything I am willing to write') #Convert it as a bina
ry string
print(list(bytearray(bytedata))) # You see the characters encoded as integers between ©
and 278-1
with open(p/'dummy.txt’,'rb') as g:#Read the file as a binary file

databyte=g.read()

databyte==bytedata # Both are equal meaning that the encoding is quite clear for text f
iles

Read / write on text file

Between the opening and the closing of a file you can read it or write on it. Remember that when you open a
file, you specifically say what you do with it, read, write, both or write at the end.

In this lecture we deal with long text files. We take the bible. It will be made available on the moodle. If you
want to play with it, download it and move it to your desktop.

In []:

Read() method

The read(size) method returns the specified number of bytes (as indicated by the size parameter) from the
file. Default is -1 which means the whole file. It is returned as a single string.

Remember: One byte = 1 character.
When working with files in read mode, it is usually advised to open it first by specifying the encoding type.

Most of the text editors allow you to check the encoding used in a given file. You can also use Firebox or do it
from terminal

» Firebox: Drag and drop the file into firefox Right click on the page Select "View Page Info" and the text
encoding will appear on the "Page Info" window.

» Terminal. Go to directory where the file is, and type "file filename". On windows you need "Cygwin"
installed (a linux emulator)

List of the standard encodings: https://docs.python.org/2.4/lib/standard-encodings.html
(https://docs.python.org/2.4/lib/standard-encodings.html)

file:///C:/Users/xav/Downloads/Lecture+8.+Files+processing.html 9/12

07/11/2019 Lecture+8.+Files+processing

Looping over a file object

Finally, remark that the opened file can be seen as an iterator. It is an iterator of the lines contained in the text
file. |

It is the best way to read/print the whole text as if it were in the text file.

When you want to read — or return — all the lines from a file in a more memory efficient, and fast manner, you
can use the loop over method.

file = open(“testfile.txt”, “r’)

for line in file: do ...

Other read-related methods

readline(size)
If no argument is passed or None or -1 is passed, then the entire line (or rest of the line) is read.
readlines()

This reads the remaining lines from the file object and returns them as a list.

Tell

Remark that when you call text file. read () twice the first call returns the whole text whereas the second
call returns an empty string. The reason is that the read method does not only return the text file but also
keeps on progressing through the file. So that when you read everything, the pointer is necessarily at the end
of your file. To know where is the pointer inside the file, you can use the tell method.

The outputed number is in byte.

In []:

from pathlib import Path

p=Path.home()/'Desktop/Int2Prog'’

textfile = open(p/"words.txt",mode = 'r',encoding = 'utf-8') # try ascii
textfile.read(2)

In []:

textfile=open(p/'bible.txt',mode="r"',encoding="utf-8") #Let's open it once and for all
in "reading mode" the file.

In []:

from pathlib import Path
#textfile=open(p/'bible.txt',mode="r',encoding="utf-8")
#textfile.read(4)

#textfile.read(9)

#textfile.read(1)

#textfile.read(4)

file:///C:/Users/xav/Downloads/Lecture+8.+Files+processing.html 10/12

07/11/2019 Lecture+8.+Files+processing
In []:

textfile.read() # It does not contain anything

In []:

with open(p/'bible.txt',mode="r',encoding="utf-8"') as f: #Let's open it once and for al
L in "reading mode" the file.
fl=f.read()
for x in f1:
print(x, end="")

" "

#1f __name__=="_main__":
main()
In []:

with open('bible.txt’', 'r') as infile:
for line in infile:
print('> {}'.format(line))

In []:

p=Path.home()/'Desktop/Int2Prog’
texfile=open(p/'bible.txt"','r")
texfile.read.split('\n")

In []:

textfile=open(p/'bible.txt"','r")

print("Pointer before reading : ",textfile.tell())
textfile.read()

print("Pointer after reading : ",textfile.tell())
textfile.close()

Be careful with the tell method, especially if you want to use it as an index. As we can see in this small
example.

In[]:

textfile=open(p/'Adumbfile.txt', 'w")
textfile.write('frangais')
textfile.close()
textfile=open(p/'Adumbfile.txt"', 'r")
i=0
j=textfile.tell()
c=textfile.read(1)
while i<len('fran¢ais'):
i+=1
j=textfile.tell()
c=textfile.read(1)
print("character read :

,C,"| index ",i, "| tell value",j)

It also happens in the big text we were looking at.

file:///C:/Users/xav/Downloads/Lecture+8.+Files+processing.html 1112

07/11/2019 Lecture+8.+Files+processing

In []:

textfile=open(p/'A_madcap_Cruise.txt','r")
data=textfile.read(20000) # Encodes the first 20 000 characters
textfile.close()
textfile=open(p/'A_madcap Cruise.txt','r")
i=0
j=textfile.tell()
c=textfile.read(1)
while i<len(data):
i+=1
j=textfile.tell()
c=textfile.read(1)
print("character read : ",c,"| index ",i, "| tell value",j) #Go to 19988

Some special character are read as i1f they were two. It 1s related to an encoding pro

blem.
It is due to the use of non-standard character (i.e. non-English characters mainly).

In []:

Exercise: write a script that prints the lLongest word in the file bible.txt

It is explicitely written in the Python documentation that the tell method works without surprise only with
binary files. One should use carefully the tell method when dealing with text files.

In []:

textfile=open(p/'A_madcap_ Cruise.txt','r")
for x in textfile:

print(x)
textfile.close()

Write mode
There are, a priori, three modes to write on a given file : 'w', 'r+' and a. First let us do a copy of our text file.

If you directly open your file with the write mode then you will erase everything from your file and end up with
an empty file.

Warning : by using the mode 'w' when you open a file you are simply deleting the file if it exists and
creating a new empty file with the same name.

If you just want to modify a text file you want to use 'r+' mode which is both reading and writing.
Remark that the sentence is written over the former text and not before.

If you want to write at the end of your file you should use the 'a' mode.

In []:

file:///C:/Users/xav/Downloads/Lecture+8.+Files+processing.html 12/12

