30/09/2019 Lecture+2.+Containers+and+for+loops.

Introduction to programming.

Lecturers : Giovanni Casini (giovanni.casini@uni.lu), Xavier Parent (xavier.parent@uni.lu) The slides and the
handout have been obtained modifying the materials by Clément Guérin

What we have seen in the first lecture:

» Some data types of objects:
= Integers (int)
= real numbers (float)
= boolean (bool)
s strings (str, just mentioned)
» Some functions:
= input
= print
« if elif else
« while

What we are going to see in this lecture:

« Distinction between functions and methods
« more datatypes:

= Integers (int)

= real numbers (float)

= boolean (bool)

= strings (str)

= tuples (tuple)

= set (set)

= dictionaries (dict) <

= Lists <
» Use of the container range <
» Loops <

Dictionaries.

A dictionary or associative table is a very particular container. It is a collection of items "key:value" where key
and value can be any kind of objects, where the statements are put between curlybrackets and separated
from each other by commas.

c={x:y,s:t,...}

localhost:8888/nbconvert/html/Dropbox (ICR)/teaching - locale/Introduction to Programming/Lecture 2/Lecture%2B2.%2BContainers%2Band%2Bfor%2Bloop... 1/8

30/09/2019 Lecture+2.+Containers+and+for+loops.

In [1]:

dicol={'Jean Paul':'jeanpaul@trucmuch.lu',\
'Fanny':'fanny@trucmuch.lu',\

'Robert': 'robert@trucmuch.lu',\
'Stephanie': (6812424239),\

0:2}

#Type
print(type(dicol))

<class 'dict'>

 The function len still gives the cardinality.
» Indexes cannot be used, but we can use the key to recall the correspondent values.
 Itis possible to associate new values to the keys.

In [2]:

dicol={'Jean Paul':'jeanpaul@trucmuch.lu',\
'"Fanny':'fanny@trucmuch.lu',\

'Robert': 'robert@trucmuch.lu',\

'Stephanie': (6812424239),\

0:2}

#It is still possible to get the length of a dictionnary.

len(dicol)

#Indexes cannot be used with dictionaries. Instead you ask for a key.
dicol['Jean Paul']

dicol[0]

Out[2]:

2

In [3]:

dicol={'Jean Paul':'jeanpaul@trucmuch.lu',\
'Fanny':'fanny@trucmuch.lu',\

'Robert': 'robert@trucmuch.lu',\
'Stephanie': (6812424239),\

0:2}

#Changing a value in a dictionary.

dicol['Stephanie']='stephanie@trucmuch.lu'
print(dicol)

{'Jean Paul': 'jeanpaul@trucmuch.lu', 'Fanny': 'fanny@trucmuch.lu',
'Robert': 'robert@trucmuch.lu', 'Stephanie': 'stephanie@trucmuch.l
u', 0: 2}

In [4]:

#What is the effect when you have two items with the same key?
dico2={0:7, 'x': 'x@trucmuch.lu',0:3}
print(dico2)

{0: 3, 'x': 'x@trucmuch.lu'}

localhost:8888/nbconvert/html/Dropbox (ICR)/teaching - locale/Introduction to Programming/Lecture 2/Lecture%2B2.%2BContainers%2Band%2Bfor%2Bloop... 2/8

30/09/2019 Lecture+2.+Containers+and+for+loops.

Here are some methods that you can use with dictionnaries. Let dic be a dictionary.

o dic.item() returns a list of the items in the dictionary (see below for the notion of list).

« dic.keys() only returns the keys of the dictionary.

« dic. values() only returns the values of the dictionary.

« dic. copy() returns a dictionary which is a copy of dic.

« dic. pop(key) take out of the dictionary the item which has key as a key and returns the value
associated to key.

« dic. popitem() takes out of the dictionnary the the last inserted item and returns such an item.

« dic.update(newdic) updates dic with the values of another dictionary newdic, it adds new items if
the keys of newdic are not in dic.

The expression
e diclkey] = value
assigns a new value to the key key if it already exists in the dictionary.

Otherwise we add the pair (key : value) to the dictionary.

In [15]:

dicol={'Jean Paul':'jeanpaul@trucmuch.lu',\
'Fanny':'fanny@trucmuch.lu',\

'Robert': 'robert@trucmuch.lu',\
'Stephanie': (6812424239),\

0:2}

dicol['Stephanie']='stephanie@trucmuch.lu' #'Stephanie' was already in the dicti
onary,

#so there is a re-assignment of value.

dicol['Carl']='carl@trucmuch.lu'#'Carl’' was not in the dictionary,
#so there is the addition of a new pair to the dictionary.
print(dicol)

{'Jean Paul': 'jeanpaul@trucmuch.lu', 'Fanny': 'fanny@trucmuch.lu',
'Robert': 'robert@trucmuch.lu', 'Stephanie': 'stephanie@trucmuch.l
u', 0: 2, 'Carl': 'carl@trucmuch.lu'}

In [17]:

dicol={'Jean Paul':'jeanpaul@trucmuch.lu',\
'Fanny':'fanny@trucmuch.lu',\

'Robert': 'robert@trucmuch.lu',\
'Stephanie': (6812424239),\

0:2}

dico2={0:7, 'x':'x@trucmuch.lu',0:3}
print(dicol,dico2)

dicol.update(dico2)

print(dicol)

{'Jean Paul': 'jeanpaul@trucmuch.lu', 'Fanny': 'fanny@trucmuch.lu',
'Robert': 'robert@trucmuch.lu', 'Stephanie': 6812424239, 0: 2} {0:
3, 'x': 'x@trucmuch.lu'}

{'Jean Paul': 'jeanpaul@trucmuch.lu', 'Fanny': 'fanny@trucmuch.lu',
'Robert': 'robert@trucmuch.lu', 'Stephanie': 6812424239, 0: 3, 'x':

'x@trucmuch.lu'}

localhost:8888/nbconvert/html/Dropbox (ICR)/teaching - locale/Introduction to Programming/Lecture 2/Lecture%2B2.%2BContainers%2Band%2Bfor%2Bloop... 3/8

30/09/2019 Lecture+2.+Containers+and+for+loops.

Lists

A list is an ordered container of possibly different types of objects. It is defined between brackets and
objects are separated by comas.

L=][x,y,...]

In [40]:

#Definition
L=[2,3,4]
#Type
type(L)
Out[40]:

list

In [41]:

#Definition by comprehension
IL=[x**2 for x in range(0,9)]
L

Out[41l]:

[0, 1, 4, 9, 16, 25, 36, 49, 64]

There are some ways of using indices that are very convenient to access to elements of a list (they work for
any ordered container such as strings and tuples).

« L[i] returns the j-th element of the list L.

o LJ[i : j] returns the elements from the j-th (included) to the j-th (excluded). The result has the same
type as L.

L[i :]isthesame as L[i : len(L)].

L[: j]isthesameas L[O : j].

L[i :: step] is the list of elements from the j-th that you obtain by step of step.

We can also concatenate lists using '+'.

In [6]:

#Changing the i-th element
L=[1,2,3,4,5,6]

L[3]=12

print (L)

#Accessing to an element of the list using the index
1=[1,2,3,4,5,6]
L[2::3]

Out[7]:

[3, 6]

localhost:8888/nbconvert/html/Dropbox (ICR)/teaching - locale/Introduction to Programming/Lecture 2/Lecture%2B2.%2BContainers%2Band%2Bfor%2Bloop... 4/8

30/09/2019

Lecture+2.+Containers+and+for+loops.

#Concatenation
1=[(1,2,3,4,5,6]
M=['horse', 'dog']
N=L+M

print(N)

2, 3, 4, 5, 6, 'horse', 'dog']

Here we list some built-in methods to deal with lists.

In

L. count(obj) returns the number of occurences of the object 0b.

L. index(value) returns the first index i for which L[i] = value.

L.insert(i, obj) inserts the object 0bj at the i-th place, shifting the rest of the list to the right.

L. remove(value) removes from L the first occurence of value.

L. pop(index) returns the corresponding value and removes it from L.

L.reverse() writes L backward (it changes L).

L. sort(L) reorders L according to the lexicographic order of the eements. The elements should all be
of the same type.

[107]:

L=[l1l,l5l,l2l,lhorselll3l]
L.sort()
print(L)

[lll, 12l, l3l, l5l, lhorsel]

Range

Ranges are very specific types of containers.

You typically create a range by calling range(start, stop, step).

This will create a range of integer numbers from start (included) to stop (excluded) by steps of length step.

You can also call range(start, stop) and step = 1 by defaut and you can also call range(stop) with
start = 0 and step = 1 by defaut.

In

[46]:

#Wait, is this really working?
range(1,100,2)

Out[46]:

range(l, 100, 2)

It is not "really" an object per se, one should rather think about it as a potential list of integers. You can still
ask if something is in a range object.

localhost:8888/nbconvert/html/Dropbox (ICR)/teaching - locale/Introduction to Programming/Lecture 2/Lecture%2B2.%2BContainers%2Band%2Bfor%2Bloop...

5/8

30/09/2019 Lecture+2.+Containers+and+for+loops.

In [19]:

#Is a value in the range?
r=range(1,100,2)

c=12

print (12 in r)

False

Differences and links among data structures

» Adictionnary is a very convenient way to store/update/erase some information about specific keys.
However, it is a rather complicated object compared to the other data structures and should therefore
be used wisely.

» A string of characters is a very specific object. It is the best way to communicate with the operator
running the code. Using the format method.

» Strings and tuples are non-mutable objects. There is no built-in method to change their values.

» Sets, dictionnaries and lists are mutable objects.
There are plenty of built-in methods to change them.
Be careful, as we have seen before the "=" sign is a re-assignment function in case of mutable objects.
To copy a complex object we need to use the copy method instead.

» The counterpart of the mutability is a slightly slower access to the data.

In [13]:

Effects of type functions.
1=[r1,2,1,2,1,3,4,2,3]
c=list(set(L))

print(c)

[]‘I 2’ 3’ 4]

"for" loops

When you have to do a repetitive task, it is very convenient to use a for loop. The standard statement is as
follows.

for variable in something:
and then line break and your instructions. Like any ;' statement you will need to indent your instructions.

variable is any (non-protected) name for your variable and something is a container.

localhost:8888/nbconvert/html/Dropbox (ICR)/teaching - locale/Introduction to Programming/Lecture 2/Lecture%2B2.%2BContainers%2Band%2Bfor%2Bloop... 6/8

30/09/2019 Lecture+2.+Containers+and+for+loops.

In [50]:

#First example of loop
for x in range(0,20):
print(x,end=" ")

0123456789 1011 12 13 14 15 16 17 18 19

In [51]:
#Comparison with a while loop
x=0
while x<20:
print(x,end=" ")
x+=1

012345678910 11 12 13 14 15 16 17 18 19

In [52]:

Use of loops for different containers

for x in {0,1,2}:#Set

print(x,end="' ")

print('")

for x in 'Introductiontoprogramming':#Strings
print(x,end="' ")

print('")

for x in list('Introductiontoprogramming'):#Lists
print(x,end="' ")

012

Introductiontoprogramming

Introductiontoprogramming

When going through a list L using a for loop you may want to have both the value and its index.

In [18]:

First way to do it.
L=[lll,l5l,l2l,lhorselll3l]
for index in range(0,len(L)):

print ("L[{}]1={}".format(index,L[index]))

L[0]=1
L[1]=5
L[2]=2
L[3]=horse
L[4]1=3

You can also use the following notation for index, variable in L:. In this case you will have
L[index] = variable during the execution of the loop.

localhost:8888/nbconvert/html/Dropbox (ICR)/teaching - locale/Introduction to Programming/Lecture 2/Lecture%2B2.%2BContainers%2Band%2Bfor%2Bloop... 7/8

30/09/2019 Lecture+2.+Containers+and+for+loops.

In [54]:

for index,variable in enumerate(L): # Use the enumerate function to access the
tuples (i,L[1i])
print("L[{}]={}".format (index,variable))

L[0]=1
L[1]=2
L[2]=1
L[3]=2
L[4]=1
L[5]=3
L[6]=4
L[7]=2
L[8]=3

You can go out of a for loop. You do it using break.

In [55]:
for x in range(0,9):
if x>6:
break
print(x,end=" ")

012345686

In [56]:

for y in range(0,9):
for x in range(0,9):
if x>6:
break # You only break out of the loop you are 1in.
print(10*y+x,end=" ")

012345¢6 10 11 12 13 14 15 16 20 21 22 23 24 25 26 30 31 32 33
34 35 36 40 41 42 43 44 45 46 50 51 52 53 54 55 56 60 61 62 63 64 65
66 70 71 72 73 74 75 76 80 81 82 83 84 85 86

localhost:8888/nbconvert/html/Dropbox (ICR)/teaching - locale/Introduction to Programming/Lecture 2/Lecture%2B2.%2BContainers%2Band%2Bfor%2Bloop... 8/8

