12/11/2019 handout_9

Introduction to programming
Lecture 9:
Lecturers: Giovanni Casini (giovanni.casini@uni.lu) and Xavier Parent (xavier.parent@uni.lu)

Revised version of material from Clément Guérin

Some things about encoding

bits and bytes

For computers, the only existing objects are 0's and 1's. A binary value is called a bit.

8 bits are gathered togehter in one single object called a byte, which can be used to represent a number
between 0 and 255 (2% possible configurations, that is, 256).

The bytes are usually considered to be the smallest piece of data you can ask for.
In general a byte is written using hexadecimal number : in hexadecimal notation, you have sixteen different
characters which are 0, 1,2, 3,4,5,6,7,8,9,a,b,c,d, e, f.

A single byte can have values ranging from 00000000 to 11111111 in binary form, which can be
conveniently represented as 00 to f f in hexadecimal, since a two-digits hexadecimal can have 16> = 256
possible values, exactly as a byte.

principle of encoding

A computer needs a set of rules to convert byte(s) into character(s) and the other way around. In other
words you need a dictionary. For twenty years, a big effort has been made to promote a uniform way to
encode characters. You have :

« ASCIl which has 27 characters and is used to encode english texts.

« 1S0O-8859-1 which has 28 characters and is used to encode western europe langages.

» Unicode which contains much more characters and is used to encode many written langages
throughout the world.

These codes do not only contain a way to encode printable characters but also unprintable characters (the
first 32).

Nowadays, you should always consider using unicode since it seems to be the most widely used encoding.

localhost:8888/nbconvert/html/Documents/python/handout_9.ipynb?download=false 1/17

12/11/2019 handout_9

In [4]:

#Here I display all the first 256 characters in utf-8 along with their bytes rep
resentation

for i in range(0,256):
print("the {}-th character is {} and is represented by {}"\

.format(i,chr(i),tuple(bytearray(bytes('{}'.format(chr(i)), 'utf-8"'
)))))

localhost:8888/nbconvert/html/Documents/python/handout_9.ipynb?download=false 2/17

12/11/2019

the
the
the
the
the
the
the
the
the
the
the

3-th
4-th
5-th
6-th
7-th
8-th
9-th

character
character
character
character
character
character
character
character
character
character

and is represented
the 11-th character
the 12-th character
and is represented

the
the
the
the
the
the
the
the
the
the
the
the
the
the
the
the
the
the
the
the
the
the
the
the
the
the
the
the
the
the
the
the
the
the
the
the
the
the
the
the
the
the
the
the
the
the

14-th
15-th
16-th
17-th
18-th
19-th
20-th
21-th
22-th
23-th
24-th
25-th
26-th
27-th
28-th
29-th
30-th
31-th
32-th
33-th
34-th
35-th
36-th
37-th
38-th
39-th
40-th
41-th
42-th
43-th
44-th
45-th
46-th
47-th
48-th
49-th
50-th
51-th
52-th
53-th
54-th
55-th
56-th
57-th
58-th
59-th

character
character
character
character
character
character
character
character
character
character
character
character
character
character
character
character
character
character
character
character
character
character
character
character
character
character
character
character
character
character
character
character
character
character
character
character
character
character
character
character
character
character
character
character
character
character

is
is
is
is
is
is
is
is

handout_9

and is represented by (0,)

and
and
and
and
and
and
and

is
is
is
is
is
is
is

represented by (1,)
represented by (2,)
represented by (3,)
represented by (4,)
represented by (5,)
represented by (6,)
represented by (7,)

is and is represented by (8,)
is and is represented by (9,)
10-th character is

by (10,)

is and is
is and is
by (13,)

is and is
is and is
is and is
is and is
is and is
is and is
is and is
is and is
is and is
is and is
is and is
is and is
is and is
is and is
is and is
is and is

represented by (11,)
represented by (12,)

represented
represented
represented
represented
represented
represented
represented
represented
represented
represented
represented
represented
represented
represented
represented

by
by
by
by
by
by
by
by
by
by
by
by
by
by
by

(14,)
(15,)
(16,)
(17,)
(18,)
(19,)
(20,)
(21,)
(22,)
(23,)
(24,)
(25,)
(26,)
(27,)
(28,)

represented by (29,)

(32,)
(33,)
(34,)
(35,)
(36,)
(37,)
(38,)
(39,)
(40,)
(41,)
(42,)
(43,)
(44,)
(45,)
(46,)
(47,)
(48,)
(49,)
(50,)
(51,)
(52,)
(33,)
(54,)
(35/)
(56,)
(37,)
(58,)

is and is represented by (30,)
is and is represented by (31,)
is and is represented by
is ! and is represented by
is " and is represented by
is # and is represented by
is $§ and is represented by
is % and is represented by
is & and is represented by
is ' and is represented by
is (and is represented by
is) and is represented by
is * and is represented by
is + and is represented by
is , and is represented by
is - and is represented by
is . and is represented by
is / and is represented by
is 0 and is represented by
is 1 and is represented by
is 2 and is represented by
is 3 and is represented by
is 4 and is represented by
is 5 and is represented by
is 6 and is represented by
is 7 and is represented by
is 8 and is represented by
is 9 and is represented by
is : and is represented by
is ; and is represented by

localhost:8888/nbconvert/html/Documents/python/handout_9.ipynb?download=false

(59,)

3/17

12/11/2019

the
the
the
the
the
the
the
the
the
the
the
the
the
the
the
the
the
the
the
the
the
the
the
the
the
the
the
the
the
the
the
the
the
the
the
the
the
the
the
the
the
the
the
the
the
the
the
the
the
the
the
the
the
the
the
the
the
the
the
the
the

60-th
61-th
62-th
63-th
64-th
65-th
66-th
67-th
68-th
69-th
70-th
71-th
72-th
73-th
74-th
75-th
76-th
77-th
78-th
79-th
80-th
81-th
82-th
83-th
84-th
85-th
86-th
87-th
88-th
89-th
90-th
91-th
92-th
93-th
94-th
95-th
96-th
97-th
98-th
99-th
100-th
101-th
102-th
103-th
104-th
105-th
106-th
107-th
108-th
109-th
110-th
111-th
112-th
113-th
114-th
115-th
116-th
117-th
118-th
119-th
120-th

character
character
character
character
character
character
character
character
character
character
character
character
character
character
character
character
character
character
character
character
character
character
character
character
character
character
character
character
character
character
character
character
character
character
character
character
character
character
character
character
character
character
character
character
character
character
character
character
character
character
character
character
character
character
character
character
character
character
character
character
character

is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is

Y, NK X EOdH®N@XMOWOZEREERagHID M EHOOQE P ® vV I

o /]

Q o

XM < ednhrR QOB B3 HKFUPR DWQHODQ

and
and
and
and
and
and
and
and
and
and
and
and
and
and
and
and
and
and
and
and
and
and
and
and
and
and
and
and
and
and
and
and
and
and
and
and
and
and
and
and
and
and
and
and
and
and
and
and
and
and
and
and
and
and
and
and
and
and
and
and
and

is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is

handout_9
represented by (60,)
represented by (61,)
represented by (62,)
represented by (63,)
represented by (64,)
represented by (65,)
represented by (66,)
represented by (67,)
represented by (68,)
represented by (69,)
represented by (70,)
represented by (71,)
represented by (72,)
represented by (73,)
represented by (74,)
represented by (75,)
represented by (76,)
represented by (77,)
represented by (78,)
represented by (79,)
represented by (80,)
represented by (81,)
represented by (82,)
represented by (83,)
represented by (84,)
represented by (85,)
represented by (86,)
represented by (87,)
represented by (88,)
represented by (89,)
represented by (90,)
represented by (91,)
represented by (92,)
represented by (93,)
represented by (94,)
represented by (95,)
represented by (96,)
represented by (97,)
represented by (98,)
represented by (99,)
represented by (100,)
represented by (101,)
represented by (102,)
represented by (103,)
represented by (104,)
represented by (105,)
represented by (106,)
represented by (107,)
represented by (108,)
represented by (109,)
represented by (110,)
represented by (111,)
represented by (112,)
represented by (113,)
represented by (114,)
represented by (115,)
represented by (116,)
represented by (117,)
represented by (118,)
represented by (119,)
represented by (120,)

localhost:8888/nbconvert/html/Documents/python/handout_9.ipynb?download=false

4/17

12/11/2019

the
the
the
the
the
the
the
the
the
the
the
the
the
the
the
the
the
the
the
the
the
the
the
the
the
the
the
the
the
the
the
the
the
the
the
the
the
the
the
the
the
the
the
the
the
the
the
the
the
the
the
the
the
the
the
the
the
the
the
the
the

121-th
122-th
123-th
124-th
125-th
126-th
127-th
128-th
129-th
130-th
131-th
132-th
133-th
134-th
135-th
136-th
137-th
138-th
139-th
140-th
141-th
142-th
143-th
144-th
145-th
l46-th
147-th
148-th
149-th
150-th
151-th
152-th
153-th
154-th
155-th
156-th
157-th
158-th
159-th
160-th
161-th
162-th
163-th
l64-th
165-th
166-th
167-th
168-th
169-th
170-th
171-th
172-th
173-th
174-th
175-th
176-th
177-th
178-th
179-th
180-th
181-th

character
character
character
character
character
character
character
character
character
character
character
character
character
character
character
character
character
character
character
character
character
character
character
character
character
character
character
character
character
character
character
character
character
character
character
character
character
character
character
character
character
character
character
character
character
character
character
character
character
character
character
character
character
character
character
character
character
character
character
character
character

is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is

1l v~ — e~ N K

HEL 7 Bl S o Sl L I 0)

©]

[V}

«

-

®

o

vV woN I+

and
and
and
and
and
and

is
is
is
is
is
is

handout_9

represented
represented
represented
represented
represented
represented

by
by
by
by
by
by

(121,)
(122,)
(123,)
(124,)
(125,)
(126,)

and is represented by (127,)
€ and is represented by (194, 128)

and
and
and
and
and
and
and
and
and
and
and
and
and
and
and
and
and
and
and
and
and
and
and
and
and
and
and
and
and
and
and
and
and
and
and
and
and
and
and
and
and
and
and
and

and is represented by (194,

and
and
and
and
and
and
and
and

is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is

is
is
is
is
is
is
is
is

represented
represented
represented
represented
represented
represented
represented
represented
represented
represented
represented
represented
represented
represented
represented
represented
represented
represented
represented
represented
represented
represented
represented
represented
represented
represented
represented
represented
represented
represented
represented
represented
represented
represented
represented
represented
represented
represented
represented
represented
represented
represented
represented
represented

by
by
by
by
by
by
by
by
by
by
by
by
by
by
by
by
by
by
by
by
by
by
by
by
by
by
by
by
by
by
by
by
by
by
by
by
by
by
by
by
by
by
by
by

(194,
(194,
(194,
(194,
(194,
(194,
(194,
(194,
(194,
(194,
(194,
(194,
(194,
(194,
(194,
(194,
(194,
(194,
(194,
(194,
(194,
(194,
(194,
(194,
(194,
(194,
(194,
(194,
(194,
(194,
(194,

(194,

(194,

(194,

(194,

(194,

(194,

(194,

(194,

(194,

(194,

(194,

(194,

(194,

represented by (194,
represented by (194,
represented by
represented by
represented by (194,

represented
represented
represented

localhost:8888/nbconvert/html/Documents/python/handout_9.ipynb?download=false

by
by
by

(194,
(194,

(194,
(194,
(194,

129)
130)
131)
132)
133)
134)
135)
136)
137)
138)
139)
140)
141)
142)
143)
144)
145)
146)
147)
148)
149)
150)
151)
152)
153)
154)
155)
156)
157)
158)
159)

160)

161)

162)

163)

164)

165)

166)

167)

168)

169)

170)

171)

172)

173)

174)
175)
176)
177)
178)
179)
180)
181)

517

12/11/2019

the
the
the
the
the
the
the
the
the
the
the
the
the
the
the
the
the
the
the
the
the
the
the
the
the
the
the
the
the
the
the
the
the
the
the
the
the
the
the
the
the
the
the
the
the
the
the
the
the
the
the
the
the
the
the
the
the
the
the
the
the

182-th
183-th
184-th
185-th
186-th
187-th
188-th
189-th
190-th
191-th
192-th
193-th
194-th
195-th
196-th
197-th
198-th
199-th
200-th
201-th
202-th
203-th
204-th
205-th
206-th
207-th
208-th
209-th
210-th
211-th
212-th
213-th
214-th
215-th
216-th
217-th
218-th
219-th
220-th
221-th
222-th
223-th
224-th
225-th
226-th
227-th
228-th
229-th
230-th
231-th
232-th
233-th
234-th
235-th
236-th
237-th
238-th
239-th
240-th
241-th
242-th

character
character
character
character
character
character
character
character
character
character
character
character
character
character
character
character
character
character
character
character
character
character
character
character
character
character
character
character
character
character
character
character
character
character
character
character
character
character
character
character
character
character
character
character
character
character
character
character
character
character
character
character
character
character
character
character
character
character
character
character
character

is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is

0 =

FNSIEN N o

O BU O F: b v B DD MDD/ 8 o oD KCQG:DAY X OO0 O OZ2tY H: H H H BB B B e B e 9 B D D o

and
and
and
and
and
and
and
and
and
and
and
and
and
and
and
and
and
and
and
and
and
and
and
and
and
and
and
and
and
and
and
and
and
and
and
and
and
and
and
and
and
and
and
and
and
and
and
and
and
and
and
and
and
and
and
and
and
and
and
and
and

is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is

handout_9

represented
represented
represented
represented
represented
represented
represented
represented
represented
represented
represented
represented
represented
represented
represented
represented
represented
represented
represented
represented
represented
represented
represented
represented
represented
represented
represented
represented
represented
represented
represented
represented
represented
represented
represented
represented
represented
represented
represented
represented
represented
represented
represented
represented
represented
represented
represented
represented
represented
represented
represented
represented
represented
represented
represented
represented
represented
represented
represented
represented
represented

localhost:8888/nbconvert/html/Documents/python/handout_9.ipynb?download=false

by
by
by
by
by
by
by
by
by
by
by
by
by
by
by
by
by
by
by
by
by
by
by
by
by
by
by
by
by
by
by
by
by
by
by
by
by
by
by
by
by
by
by
by
by
by
by
by
by
by
by
by
by
by
by
by
by
by
by
by
by

(194,
(194,
(194,
(194,
(194,
(194,
(194,
(194,
(194,
(194,
(195,
(195,
(195,
(195,
(195,
(195,
(195,
(195,
(195,
(195,
(195,
(195,
(195,
(195,
(195,
(195,
(195,
(195,
(195,
(195,
(195,
(195,
(195,
(195,
(195,
(195,
(195,
(195,
(195,
(195,
(195,
(195,
(195,
(195,
(195,
(195,
(195,
(195,
(195,
(195,
(195,
(195,
(195,
(195,
(195,
(195,
(195,
(195,
(195,
(195,
(195,

182)
183)
184)
185)
186)
187)
188)
189)
190)
191)
128)
129)
130)
131)
132)
133)
134)
135)
136)
137)
138)
139)
140)
141)
142)
143)
144)
145)
146)
147)
148)
149)
150)
151)
152)
153)
154)
155)
156)
157)
158)
159)
160)
161)
162)
163)
164)
165)
166)
167)
168)
169)
170)
171)
172)
173)
174)
175)
176)
177)
178)

6/17

12/11/2019 handout_9

the 243-th character is
the 244-th character is
the 245-th character is
the 246-th character is
the 247-th character is
the 248-th character is
the 249-th character is
the 250-th character is
the 251-th character is
the 252-th character is
the 253-th character is
the 254-th character is
the 255-th character is

O

and is represented by (195, 179)
and is represented by (195, 180)
and is represented by (195, 181)
and is represented by (195, 182)
and is represented by (195, 183)
and is represented by (195, 184)
and is represented by (195, 185)
and is represented by (195, 186)
and is represented by (195, 187)
and is represented by (195, 188)
and is represented by (195, 189)
and is represented by (195, 190)
and is represented by (195, 191)

O O O

o L SN i el B o W 1A O}

In [3]:

print(chr(62))

print('>")
print(str(b'\x3e', 'utf-8"))

print(chr(62),'>"',str(b'\x3e', 'utf-8"))

vV V.V V

Compatibility between ASCII and other codes

The ASCII encoding is still used and is usually compatible with most encodings. Namely, whatever might be
the encoding you are using, if you want to convert a number between () and 127 into a character, you will
always end up with the same character, namely the ASCII one. The problem comes when you are trying to
convert a bigger number.

A priori, the numbers between 127 to 255 were free for allowing other langage's accents, special
characters. Of course there are more than 255 characters and therefore there has been a lot of different
encoding.

That's roughly speaking the reason why the Unicode comes into play as a way of uniformizing the access to
other characters.

Unicode : UTF-8

Unicode is an abstract encoding standard, not an encoding. That’s where UTF-8 and other encoding
schemes come into play.

Unicode maps characters into code points, and defines several different encodings from its single character
set.

UTF-8, as well as UTF-16 and UTF-32, are encoding formats for representing Unicode characters as binary
data. UTF-8 has become the standard so far.

localhost:8888/nbconvert/html/Documents/python/handout_9.ipynb?download=false 717

12/11/2019 handout_9

we want to draw (28)4 characters. Instead of having one byte, we have four of them and therefore represent
our characters. For instance, the word 'encoding' is encoded in ASCII by

101,110,99,111, 100, 105, 110, 103. Therefore, if we apply naively our idea we represent the word
‘encoding' in our naive unicode by :

(0,0,0,101),(0,0,0,110),(0,0,0,99),(0,0,0, 111), (0,0, 0, 100), (0, 0, 0, 105), (0, 0, 0, 110), (0, 0, 0, I

The problem is now quite obvious, it makes a lot of 0's.

A nice thing about unicode is that it allows you to still write 'encoding' as
101,110,99, 111, 100, 105, 110, 103 but to write also a lot of other characters. In standard utf-8, the first
byte tells you how many bytes you should read to get your character.

« If you read a first byte between 0 (00 in hexadecimal notation) and 127 (7 F in hexadecimal notation),
you know that the character is encode with one single byte.

« If you read a first byte between 194 (C2 in hexadecimal notation) and 223 (D4 in hexadecimal
notation), you know that the character is encode with exactly two bytes.

 and so on up to 6 bytes.

What you need to know is that the first 128 characters in utf 8 are encoded using one byte, that from 129 to
20477 they are encoded using two bytes and so on.

In [1]:

tuple(bytes('encoding', 'utf-8')) #Here is a call converting the characters to b
ytes

Out[1l]:

(101, 110, 99, 111, 100, 105, 110, 103)

Characters encoded in utf-8 are ordered.

Using built-in functions, you can use such an order. Namely :
chr(i) will return the string with the i-th utf-8 character.

Conversely :
ord(’c’) will return the number i such that c is the i-th character in utf-8.

In most of the cases you will be dealing with this is enough.

In [5]:

i=1500

print(chr(i)) #Print the i-th character in utf-8

print(ord(chr(i))) #ord takes some utf-8 character and returns an i such that ch
r(i) is the character you entered

p
1500

localhost:8888/nbconvert/html/Documents/python/handout_9.ipynb?download=false 8/17

12/11/2019 handout_9
In [2]:
there are different ways to recall the same character
print(chr(62))

print('>")
print(str(b'\x3e', 'utf-8')) #UTF-8 code

print(chr(62), '>"',str(b'\x3e', 'utf-8"))

vV V.V V

Reference

If you want to know more about the history/perspective about encoding, you can check the wikipedia pages
about different encodings. You can also check this nice texts which explain the basics about encoding

https://www.joelonsoftware.com/2003/10/08/the-absolute-minimum-every-software-developer-absolutely-
positively-must-know-about-unicode-and-character-sets-no-excuses/
(https://www.joelonsoftware.com/2003/10/08/the-absolute-minimum-every-software-developer-absolutely-
positively-must-know-about-unicode-and-character-sets-no-excuses/)

https://realpython.com/python-encodings-guide/ (https://realpython.com/python-encodings-guide/)

Bytes and Bytearrays types

A computer encodes data with binary objects (some 'list' of O and 1). In practical you gather 8 bits as one
single byte which is therefore a number between 0 and 28 — 1 = 255.

In Python, you can create byte-like objects, that is, there is a type bytes.

In apparence, a byte is like a string of characters but with a b in front of it. A byte can either be a sequence
of hexadecimal numbers (beginning by '\x'), a string of characters with a b in front of it or a mix of both.

Actually, an object of type bytes or bytearray is a sequence of small integers in the range 0 < x < 256,
print as ASCII characters when displayed. bytes are immutable sequences, while bytearrays are the mutable
correspondent objects.

In [3]:

Giving an integer n as argument, bytes simply initialises a sequence of n empt
y bytes

empty bytes = bytes(10)

print(type(empty bytes))

print (empty bytes)

<class 'bytes'>
b'\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00"'

localhost:8888/nbconvert/html/Documents/python/handout_9.ipynb?download=false 9/17

https://www.joelonsoftware.com/2003/10/08/the-absolute-minimum-every-software-developer-absolutely-positively-must-know-about-unicode-and-character-sets-no-excuses/
https://realpython.com/python-encodings-guide/

12/11/2019 handout_9

In [4]:

The following is also a byte
b'This is a byte'
list(b'This is a byte')

Out[4]:

[84, 104, 105, 115, 32, 105, 115, 32, 97, 32, 98, 121, 116, 101]

In [8]:

You can stransfor a byte into a mutable bytearray using the bytearrays() funct
ion

b'This is a byte'

v=bytearray(b'This is a byte')

print(v)

print(list(v))

print(type(v))

bytearray(b'This is a byte')
[84, 104, 105, 115, 32, 105, 115, 32, 97, 32, 98, 121, 116, 101]
<class 'bytearray'>

In [9]:

One single character being converted as two bytes (not in ascii)
scharl="¢"

sbl=bytes(scharl, 'utf-8")

print(chr(7+16*14))

schar2="1"

sb2=bytes(schar2, 'utf-8")

print('sbl="',sbl)

print('sb2=",sb2)

print(len(scharl),len(sbl))

print(len(schar2),len(sb2))

G

sbl= b'\xc3\xa7'
sb2= b'1l’

1 2

11

In [10]:

bytes('u', 'utf-8') #Two bytes for one single character
Out[107]:

b'\xc3\xb9'

localhost:8888/nbconvert/html/Documents/python/handout_9.ipynb?download=false 10/17

12/11/2019 handout_9

In [11]:

bytes('a','ascii') #UnicodeError, the unicode character 'a' cannot be converted
to an ascii character

UnicodeEncodeError Traceback (most recent cal
1 last)

<ipython-input-11-2745416cada3> in <module>

-———> 1 bytes('a','ascii') #UnicodeError, the unicode character 'a'
cannot be converted to an ascii character

UnicodeEncodeError: 'ascii' codec can't encode character '\xe0' in p
osition 0: ordinal not in range(128)

Warning : when you deal with bytes object, there are at leas three things that you should not mix, otherwise
you will go into some trouble.

 The digital representation of a Byte : it is a number between 0 and 255.

» The hexadecimal representation of a Byte : it is of the form \xXY where X and Y are chosen among 0,...,
9anda,..., f.

» The string of characters representing the digital representation of a Byte.

» The string of characters representing the hexadecimal representation of a Byte.

In [12]:

#Explain the following output :

print(b'\x00',' and ', '\x00")

#The first one is simply the byte representing the hexadecimal number 00.

#The second is the string with one single character represented by the hexadecim
al number 00 i.e. nothing since

#\x00 represents in unicode (or ascii) the "do nothing" order.

print(type(b'\x00"'),' and ',type('\x00')) #Different types

print(b'\x66',' and ', '\x66")

\x66 represents in unicode (or ascii) the character 'f'.

#For clarity, Python converts, in binary strings, hexadecimal numbers representi
ng

#printable characters to their actual form

print(b'\x66',' and ',b'66',' and', '66")

binary \x66 represents the hexadecimal number 66 which is in decimal, 102,

b'66' means the two characters 6 and 6 each of them being written for an hexad
ecimal number (\x36)

#'66' is simply the string with two characters 6 and 6

b'\x00"' and

<class 'bytes'> and <class 'str'>
b'f' and f£

b'f' and b'66' and 66

localhost:8888/nbconvert/html/Documents/python/handout_9.ipynb?download=false 11/17

12/11/2019 handout_9

As Python objects, bytes are non-mutable objects and share all properties and methods associated to
string of characters.

Should you want to change a byte, use bytearray which is a mutable structure.

In [20]:

b=b'abc'#type byte
print(b)
print(list(b))

var=bytearray(b) #create the correspondent bytearray
print(list(var))

print(var)

print(var[1l])

var[l]=var[1l]+1

print(var[l]) # I can modify the content of a bytearray
print(var)

b'abc'

[97, 98, 99]

[97, 98, 99]
bytearray(b'abc')
98

99
bytearray(b'acc')
[97, 99, 99]

In [21]:

#str decodes a character. first argument the binary string to convert, second ar
gument the encoding

str(b'\x4l1l','utf-8")
Out[21]:

' Al
You have to be careful with one thing, not every hexadecimal number can be converted to a string.

In [27]:

No 'nice' representation
#str(b'\x0F', 'utf-8")

a 'good' representation
str(b'\x30', 'ascii')

Oout[27]:

lOl

localhost:8888/nbconvert/html/Documents/python/handout_9.ipynb?download=false 12/17

12/11/2019 handout_9
In [7]:

#Exercise : write a function Cesarstr which takes into arguments
string : a string of characters
key : a number between 0 and 127

and returns the string of characters where the list has been changed by a tran
slation of key.

from functools import reduce

def Cesarstr(string, key):
IL=1list(bytearray(string, 'ascii'))
LL=list(map(lambda x:chr((xt+tkey)%128), L))
return reduce(lambda x,y:x+y, LL)

for k in range(0,127):
string="apples'
ciphered=Cesarstr(string, k)
deciphered=Cesarstr (ciphered, -k)
print("key : ",k,string,"-->",ciphered,"-->",deciphered)

localhost:8888/nbconvert/html/Documents/python/handout_9.ipynb?download=false 14/17

12/11/2019 handout_9

key 0 apples --> apples --> apples
key 1 apples --> bggmft --> apples
key 2 apples --> crrngu --> apples
key 3 apples --> dssohv --> apples
key 4 apples --> ettpiw --> apples
key 5 apples --> fuugjx --> apples
key 6 apples --> gvvrky --> apples
key 7 apples --> hwwslz --> apples
key 8 apples --> ixxtm{ --> apples
key 9 apples --> jyyun| --> apples

key : 10 apples --> kzzvo} --> apples
key : 11 apples --> 1{{wp~ --> apples
key : 12 apples --> m||xg --> apples
key : 13 apples --> n}}yr --> apples
key : 14 apples --> o~~zs --> apples
key : 15 apples --> p{t --> apples
key : 16 apples --> g|u --> apples
key : 17 apples --> r }v --> apples

key : 18 apples --> s ~w --> apples
key : 19 apples --> t x --> apples
key : 20 apples --> u y --> apples
key : 21 apples --> v --> apples
key : 22 apples --> w { --> apples
key : 23 apples --> x
--> apples
key : 24 apples -->} --> apples
key : 25 apples --> z ~ —--> apples
key ¢ 26 apples --> {
--> apples
key : 27 apples --> | --> apples

key : 28 apples --> } --> apples
--> appleses --> ~
key : 30 apples -->

--> apples
key : 31 apples --> --> apples
key ¢ 32 apples --> --> apples
--> applesles -->
key : 34 apples --> --> apples
key : 35 apples --> --> apples
key : 36 apples --> --> apples
key : 37 apples -->
--> apples
key : 38 apples --> --> apples
key : 39 apples --> --> apples

--> applesples -->
key : 41 apples -->

--> apples
key : 42 apples --> --> apples
key : 43 apples --> --> apples
--> apples -->
key : 45 apples --> --> apples
key ¢ 46 apples --> ! ——> apples
key : 47 apples --> " --> apples
key : 48 apples --> # --> apples

key : 49 apples --> !! § --> apples
key : 50 apples --> "" % --> apples
key : 51 apples --> ## & —--> apples
key : 52 apples --> $$ ' --> apples
key : 53 apples --> %%! (--> apples
key : 54 apples --> &&") --> apples

localhost:8888/nbconvert/html/Documents/python/handout_9.ipynb?download=false

15/17

12/11/2019

key
key
key
key
key
key
key
key
key
key
key
key
key
key
key
key
key
key
key
key
key
key
key
key
key
key
key
key
key
key
key
key
key
key
key
key
key
key
key
key
key
key
key
key
key
key
key
key
key
key
key
key
key
key
key
key
key
key
key
key
key

localhost:8888/nbconvert/html/Documents/python/handout_9.ipynb?download=false

55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115

apples
apples
apples
apples
apples
apples
apples
apples
apples
apples
apples
apples
apples
apples
apples
apples
apples
apples
apples
apples
apples
apples
apples
apples
apples
apples
apples
apples
apples
apples
apples
apples
apples
apples
apples
apples
apples
apples
apples
apples
apples
apples
apples
apples
apples
apples
apples
apples
apples
apples
apples
apples
apples
apples
apples
apples
apples
apples
apples
apples
apples

"'#* —-> apples
(($+ --> apples
))% , --> apples
**x§ — —-=> apples
++' . --> apples
,r(Y/ —=> apples
--)"0 --> apples
..*#1 --> apples
//+$2 --> apples
100,%3 --> apples
"11-&4 --> apples
#22.'5 --> apples
$33/(6 --> apples
%440)7 --> apples
&551*%8 --> apples
'662+9 --> apples
(773,: --> apples
)884-; --> apples
*995.< --> apples
+::6/= --> apples
;3370> —-> apples
-<<81? --> apples
.==92@ --> apples
/>>:3A --> apples
0??;4B --> apples
1@@<5C --> apples
2AA=6D --> apples
3BB>7E --> apples
4CC?8F --> apples
5DD@9G --> apples
6EEA:H --> apples
7FFB; I --> apples
8GGC<J --> apples
9HHD=K --> apples
:ITIE>L --> apples
; JJF?M --> apples
<KKG@N --> apples
=LLHAO --> apples
>MMIBP --> apples
?NNJCQ --> apples
@OOKDR --> apples
APPLES --> apples
BQQOMFT --> apples
CRRNGU --> apples
DSSOHV --> apples
ETTPIW --> apples
FUUQJX --> apples
GVVRKY --> apples
HWWSLZ --> apples
IXXTM[--> apples
JYYUN\ --> apples
KZZV0O] --> apples
L[[WP" --> apples
M\\XQ --> apples
N]]YR™ --> apples
0""ZSa --> apples
P [Tb --> apples
Q" "\Uc --> apples
Raa]vd --> apples
Sbb"We --> apples
Tcc_Xf --> apples

handout_9

16/17

12/11/2019

key
key
key
key
key
key
key
key
key
key
key

localhost:8888/nbconvert/html/Documents/python/handout_9.ipynb?download=false

116
117
118
119
120
121
122
123
124
125
126

apples
apples
apples
apples
apples
apples
apples
apples
apples
apples
apples

-
-
-

-
-

-
-
-

Uudd Yyg -->
VeeaZh -->
WEfb[i -->
Xggc\j -->
Yhhd]lk -->
Ziie®l -->
[33f m -->
\kkg n -->
11lhao -->
“mmibp -->
_nnjcq -->

apples
apples
apples
apples
apples
apples
apples
apples
apples
apples
apples

handout_9

17/17

