
30/09/2019 Lecture+3+Errors+and+Functions

localhost:8888/nbconvert/html/Dropbox (ICR)/teaching - locale/Introduction to Programming/Lecture 3/Lecture%2B3%2BErrors%2Band%2BFunctions.ipynb?… 1/7

Introduction to programming.
Lecturers : Giovanni Casini (giovanni.casini@uni.lu), Xavier Parent (xavier.parent@uni.lu) The slides and the
handout have been obtained modifying the materials by Clément Guérin

In the process of solving a problem with a program, you have some general steps :

Understanding the problem.
Converting the abstract problem into a computer-compatible process, i.e. write the algorithm solving
the problem.
Converting the algorithm in a valid script for some programming langage (e.g. Python).
Testing your script.
Conclusion, visualization.

The two first steps obviously bring their share of potential errors but we will not deal with them for the
moment. Grammatical and semantic errors have to do with the third and fourth steps.

Errors, debugging.
There are two different kinds of errors, you have the

grammatical errors (also known as syntactic errors) that prevent your code from running
and the semantic errors, i.e. when your code is running but not doing what you think it is.

The interpreter will automatically detect the first kind of errors. You need to detect on your own the second
kind of errors.

We will list a few common syntactic errors.

In [2]:

grammatical errors.
L=[]
L[0] index is >len(L)-1

In [1]:

semantic errors.
L=[1,3,2,4]
#Lsorted L.sort()#Wrong command
Lsorted=L.copy()#Good command

30/09/2019 Lecture+3+Errors+and+Functions

localhost:8888/nbconvert/html/Dropbox (ICR)/teaching - locale/Introduction to Programming/Lecture 3/Lecture%2B3%2BErrors%2Band%2BFunctions.ipynb?… 2/7

syntactic errors
A grammatical error arises when Python does not understand how a line of code should be interpreted.
When such thing occurs, the interpreter will

stop the code,
point out which lines hasve led to the error (there might be multiple lines involved if you call functions),
name the error
and give an argument

Ideally, with the name of the mistake and the line of the mistake, we can debug the code.

You will find below a list of some common errors along with some advices to deal with them.

Neither the list of errors nor the list of advices is exhaustive.

Indentation Error
arises when a line of command is wrongly indented ("unexpected indent"), i.e. when you change the
indentation level for a line which does not finish with a colon and which is not after a line ending with a
colon.

It also arises when there is no indented line after a line ending with a colon ":" ("expected an indented
block").

In [20]:

#Indentation Error
n=0
L=[]
while n<5: #pass
L.append(n)
 n=n+1
print(L)

Actions to take.

Check that all lines are vertically aligned.
If all lines are visually aligned and you however get a IndentationError, it could be that you are mixing
invisible spaces and invisible tabs. Whereas both look the same they are not the same and will lead to
an error. To see these invisible characters, you should go to the setting page and tick the case "show
invisible characters".
Did you insert a (properly indented) line of command after a colon? If not, did you forget to do so or did
you want the code to do nothing? If you want the code to do nothing after a colon then just erase the
colon line as well.
Be careful when you copy and past indented lines of code.

 File "<ipython-input-20-e5170c46de4f>", line 5
 L.append(n)
 ^
IndentationError: expected an indented block

30/09/2019 Lecture+3+Errors+and+Functions

localhost:8888/nbconvert/html/Dropbox (ICR)/teaching - locale/Introduction to Programming/Lecture 3/Lecture%2B3%2BErrors%2Band%2BFunctions.ipynb?… 3/7

Index Error
when an index for a string/list is out of range.

Actions to take:

Remember that the admissible indices for a list goes from to , or from to .
Lists are mutable objects, check that the actions you take do not modify the length of the list. For
instance you could use the command and check if this is what you expect.
If the index you are calling is a variable, are you sure you do not crucially modify the variable in your
code?

𝐿 0 𝐥𝐞𝐧(𝐿) − 1 −𝐥𝐞𝐧(𝐿) −1

𝐩𝐫𝐢𝐧𝐭

In [21]:

#Example
L=[0,1,2]
L[3]

In [24]:

#Example
L=[0,1,2]
print(L[2])
L.remove(1)#after this operation the use of index 2 in L creates an error
print(L[2])

--

IndexError Traceback (most recent cal
l last)
<ipython-input-21-d36c82155a1e> in <module>
 1 #Example
 2 L=[0,1,2]
----> 3 L[3]

IndexError: list index out of range

2

--

IndexError Traceback (most recent cal
l last)
<ipython-input-24-844e80372733> in <module>
 3 print(L[2])
 4 L.remove(1)#after this operation the use of index 2 in L cre
ates an error
----> 5 print(L[2])

IndexError: list index out of range

30/09/2019 Lecture+3+Errors+and+Functions

localhost:8888/nbconvert/html/Dropbox (ICR)/teaching - locale/Introduction to Programming/Lecture 3/Lecture%2B3%2BErrors%2Band%2BFunctions.ipynb?… 4/7

Name Error
You use a name of variable which is not defined.

Action(s) to take.

Localize the variable in the code using the line number given on the terminal.
Localize the line (if any) where you defined the variable. Is it before/after the line where the error arises?
Is it indented (if statement, while, for loops)?
Remember that you need to write the exact same sequence of characters to call a variable. Did you
make an orthograph or grammatical mistake when defining/calling the variable?
If the line where you define or get the error is in a function, it might just be that your variable is local and
your use is global or the other way around.
If the name is used as a function, make sure you imported the relevant module before calling the
function. Same thing with global constants such as or .𝜋 𝛾

In [25]:

#Example.
variable=0
while Variable<5: #even a mistake in the capitalisation can cause an error
 L.append(n)
 n=n+1
print(L)

Overflow Error
arises when you reach the computational limit for floating numbers. It usually happens when you play around
with very big integers and then convert them into floating numbers. The idea being that integers can ask for
a virtually infinite quantity of memory (more precisely it will reach a MemoryError before giving up)
whereas floating numbers use only a limited amount of memory.

--

NameError Traceback (most recent cal
l last)
<ipython-input-25-84e5bb89533e> in <module>
 1 #Example.
 2 variable=0
----> 3 while Variable<5: #even a mistake in the capitalisation can
 cause an error
 4 L.append(n)
 5 n=n+1

NameError: name 'Variable' is not defined

30/09/2019 Lecture+3+Errors+and+Functions

localhost:8888/nbconvert/html/Dropbox (ICR)/teaching - locale/Introduction to Programming/Lecture 3/Lecture%2B3%2BErrors%2Band%2BFunctions.ipynb?… 5/7

In [5]:

Example
n=(1.0*10**1000)/10**1000
print(n)

Runtime Error
arises when an error occurs but does not fall in any other type.

In [13]:

#Example
raise

Syntax Error
arises when there is a problem of pure syntax.

For instance, it can arise when you use an invalid character in an identifier, it can also arises when you try to
assign a value to a protected keyword or a number. Forgetting a colon after a , , , , will also
lead to a syntax error. The Python documentation refers to them as "errors" while any other Error is refered
to as an Exception.

𝐟𝐨𝐫 𝐢𝐟 𝐰𝐡𝐢𝐥𝐞 𝐝𝐞𝐟 …

In [14]:

#Examples
#print(x
for x in range(0,9)
 print(x)

--

OverflowError Traceback (most recent cal
l last)
<ipython-input-5-72302de20f04> in <module>
 1 # Example
----> 2 n=(1.0*10**1000)/10**1000
 3 print(n)

OverflowError: int too large to convert to float

--

RuntimeError Traceback (most recent cal
l last)
<ipython-input-13-308e86d4b02f> in <module>
 1 #Example
----> 2 raise

RuntimeError: No active exception to reraise

 File "<ipython-input-14-fdaf583d289c>", line 3
 for x in range(0,9)
 ^
SyntaxError: invalid syntax

30/09/2019 Lecture+3+Errors+and+Functions

localhost:8888/nbconvert/html/Dropbox (ICR)/teaching - locale/Introduction to Programming/Lecture 3/Lecture%2B3%2BErrors%2Band%2BFunctions.ipynb?… 6/7

Action(s) to take.

Use only latin letters without accent. Avoid accents and exotic letters.
Strictly avoid the use of backslash, comas, colons, That is all meaningful characters for Python.
Usually when we write we actually mean . Check that you did not mix the equality of
assignement and the boolean equality .
Write the colon when you finish a , , , , . Remark that with an enhanced text editor,
when you put a colon at the end of a line, the line break automatically end up with an indented code.
Should you forget to put a colon, you code will not be automatically indented. That's why, in general, it
is hard to forget about the colon.

…

1 = … 1 == …

= ==

𝐟𝐨𝐫 𝐢𝐟 𝐰𝐡𝐢𝐥𝐞 𝐝𝐞𝐟 …

Type Error
arises when a wrong type is used. It typically happens when you call a built-in function that takes specific
types as arguments. It also highlights a wrong number of arguments when calling a function. It could also
arise when you use a string as an index for a list.

In [18]:

#Examples
L=['a','b','c']
#L['c']
#len(3)

Action(s) to take.

Look out for multiple affectations for one name of variable. Write longer names of variables to avoid
potential conflicts.
If you are using a built-in function, use the function on the function to see which types and how
many arguments you can give to the function.
If you are using a built-in method for a specific type, use the function of the type, to see why the
method will not work (sometimes they have different names for different types).
If applicable, change the type of your variables using a type function. You should test the outcome of
these methods in the qpython interface before using it in a script.

𝐡𝐞𝐥𝐩

𝐡𝐞𝐥𝐩

Value Error
arises when you call a function with the right type but a forbidden value.

--

TypeError Traceback (most recent cal
l last)
<ipython-input-18-7e59cae8b4f3> in <module>
 2 L=['a','b','c']
 3 #L['c']
----> 4 len(3)

TypeError: object of type 'int' has no len()

30/09/2019 Lecture+3+Errors+and+Functions

localhost:8888/nbconvert/html/Dropbox (ICR)/teaching - locale/Introduction to Programming/Lecture 3/Lecture%2B3%2BErrors%2Band%2BFunctions.ipynb?… 7/7

In [19]:

#Example
int('value')
#1/0

Action(s) to take.

Call the function to see if there is a forbidden value.
When you divide by zero you directly get ZeroDivisionError. Look for small floating numbers that can
be approximated by zero.
In general, the problem comes from specific cases, e.g. when an integer is or a list/ string of character
is empty. You may have to consider statements to specifically handle this case.

𝐡𝐞𝐥𝐩

0

𝐢𝐟

--

ValueError Traceback (most recent cal
l last)
<ipython-input-19-57fe6b21a365> in <module>
 1 #Example
----> 2 int('value')
 3 #1/0

ValueError: invalid literal for int() with base 10: 'value'

