
30/09/2019 Lecture+2.+Containers+and+for+loops.

localhost:8888/nbconvert/html/Dropbox (ICR)/teaching - locale/Introduction to Programming/Lecture 2/Lecture%2B2.%2BContainers%2Band%2Bfor%2Bloop… 1/8

Introduction to programming.
Lecturers : Giovanni Casini (giovanni.casini@uni.lu), Xavier Parent (xavier.parent@uni.lu) The slides and the
handout have been obtained modifying the materials by Clément Guérin

What we have seen in the first lecture:

Some data types of objects:
Integers (int)
real numbers (float)
boolean (bool)
strings (str, just mentioned)

Some functions:
input
print

if elif else
while

What we are going to see in this lecture:

Distinction between and
more :

Integers (int)
real numbers (float)
boolean (bool)
strings (str)
tuples (tuple)
set (set)
dictionaries (dict)
Lists

Use of the container range

𝐟𝐮𝐧𝐜𝐭𝐢𝐨𝐧𝐬 𝐦𝐞𝐭𝐡𝐨𝐝𝐬

𝐝𝐚𝐭𝐚𝐭𝐲𝐩𝐞𝐬

⇐

⇐

⇐

𝐋𝐨𝐨𝐩𝐬 ⇐

Dictionaries.
A dictionary or associative table is a very particular container. It is a collection of items "key:value" where key
and value can be any kind of objects, where the statements are put between and separated
from each other by .

𝐜𝐮𝐫𝐥𝐲𝐛𝐫𝐚𝐜𝐤𝐞𝐭𝐬

𝐜𝐨𝐦𝐦𝐚𝐬

𝑐 = {𝑥 : 𝑦, 𝑠 : 𝑡, …}

30/09/2019 Lecture+2.+Containers+and+for+loops.

localhost:8888/nbconvert/html/Dropbox (ICR)/teaching - locale/Introduction to Programming/Lecture 2/Lecture%2B2.%2BContainers%2Band%2Bfor%2Bloop… 2/8

In [1]:

dico1={'Jean Paul':'jeanpaul@trucmuch.lu',\
'Fanny':'fanny@trucmuch.lu',\
'Robert':'robert@trucmuch.lu',\
'Stephanie': (6812424239),\
0:2}

#Type
print(type(dico1))

The function still gives the cardinality.
Indexes cannot be used, but we can use the key to recall the correspondent values.
It is possible to associate new values to the keys.

𝐥𝐞𝐧

In [2]:

dico1={'Jean Paul':'jeanpaul@trucmuch.lu',\
'Fanny':'fanny@trucmuch.lu',\
'Robert':'robert@trucmuch.lu',\
'Stephanie': (6812424239),\
0:2}
#It is still possible to get the length of a dictionnary.
len(dico1)
#Indexes cannot be used with dictionaries. Instead you ask for a key.
dico1['Jean Paul']
dico1[0]

In [3]:

dico1={'Jean Paul':'jeanpaul@trucmuch.lu',\
'Fanny':'fanny@trucmuch.lu',\
'Robert':'robert@trucmuch.lu',\
'Stephanie': (6812424239),\
0:2}
#Changing a value in a dictionary.
dico1['Stephanie']='stephanie@trucmuch.lu'
print(dico1)

In [4]:

#What is the effect when you have two items with the same key?
dico2={0:7,'x':'x@trucmuch.lu',0:3}
print(dico2)

<class 'dict'>

Out[2]:

2

{'Jean Paul': 'jeanpaul@trucmuch.lu', 'Fanny': 'fanny@trucmuch.lu',
'Robert': 'robert@trucmuch.lu', 'Stephanie': 'stephanie@trucmuch.l
u', 0: 2}

{0: 3, 'x': 'x@trucmuch.lu'}

30/09/2019 Lecture+2.+Containers+and+for+loops.

localhost:8888/nbconvert/html/Dropbox (ICR)/teaching - locale/Introduction to Programming/Lecture 2/Lecture%2B2.%2BContainers%2Band%2Bfor%2Bloop… 3/8

Here are some methods that you can use with dictionnaries. Let be a dictionary.

 returns a list of the items in the dictionary (see below for the notion of list).
 only returns the keys of the dictionary.

 only returns the values of the dictionary.
 returns a dictionary which is a copy of .

 take out of the dictionary the item which has as a key and returns the value
associated to key.

 takes out of the dictionnary the the last inserted item and returns such an item.
 updates with the values of another dictionary , it adds new items if

the keys of are not in .

𝑑𝑖𝑐

𝑑𝑖𝑐. 𝐢𝐭𝐞𝐦()

𝑑𝑖𝑐. 𝐤𝐞𝐲𝐬()

𝑑𝑖𝑐. 𝐯𝐚𝐥𝐮𝐞𝐬()

𝑑𝑖𝑐. 𝐜𝐨𝐩𝐲() 𝑑𝑖𝑐

𝑑𝑖𝑐. 𝐩𝐨𝐩(𝑘𝑒𝑦) 𝑘𝑒𝑦

𝑑𝑖𝑐. 𝐩𝐨𝐩𝐢𝐭𝐞𝐦()

𝑑𝑖𝑐. 𝐮𝐩𝐝𝐚𝐭𝐞(𝑛𝑒𝑤𝑑𝑖𝑐) 𝑑𝑖𝑐 𝑛𝑒𝑤𝑑𝑖𝑐

𝑛𝑒𝑤𝑑𝑖𝑐 𝑑𝑖𝑐

The expression

assigns a new value to the key if it already exists in the dictionary.

Otherwise we add the pair to the dictionary.

𝑑𝑖𝑐[𝑘𝑒𝑦] = 𝑣𝑎𝑙𝑢𝑒

𝑘𝑒𝑦

(𝑘𝑒𝑦 : 𝑣𝑎𝑙𝑢𝑒)

In [15]:

dico1={'Jean Paul':'jeanpaul@trucmuch.lu',\
'Fanny':'fanny@trucmuch.lu',\
'Robert':'robert@trucmuch.lu',\
'Stephanie': (6812424239),\
0:2}
dico1['Stephanie']='stephanie@trucmuch.lu' #'Stephanie' was already in the dicti
onary,
#so there is a re-assignment of value.
dico1['Carl']='carl@trucmuch.lu'#'Carl' was not in the dictionary,
#so there is the addition of a new pair to the dictionary.
print(dico1)

In [17]:

dico1={'Jean Paul':'jeanpaul@trucmuch.lu',\
'Fanny':'fanny@trucmuch.lu',\
'Robert':'robert@trucmuch.lu',\
'Stephanie': (6812424239),\
0:2}
dico2={0:7,'x':'x@trucmuch.lu',0:3}
print(dico1,dico2)
dico1.update(dico2)
print(dico1)

{'Jean Paul': 'jeanpaul@trucmuch.lu', 'Fanny': 'fanny@trucmuch.lu',
'Robert': 'robert@trucmuch.lu', 'Stephanie': 'stephanie@trucmuch.l
u', 0: 2, 'Carl': 'carl@trucmuch.lu'}

{'Jean Paul': 'jeanpaul@trucmuch.lu', 'Fanny': 'fanny@trucmuch.lu',
'Robert': 'robert@trucmuch.lu', 'Stephanie': 6812424239, 0: 2} {0:
3, 'x': 'x@trucmuch.lu'}
{'Jean Paul': 'jeanpaul@trucmuch.lu', 'Fanny': 'fanny@trucmuch.lu',
'Robert': 'robert@trucmuch.lu', 'Stephanie': 6812424239, 0: 3, 'x':
'x@trucmuch.lu'}

30/09/2019 Lecture+2.+Containers+and+for+loops.

localhost:8888/nbconvert/html/Dropbox (ICR)/teaching - locale/Introduction to Programming/Lecture 2/Lecture%2B2.%2BContainers%2Band%2Bfor%2Bloop… 4/8

Lists
A list is an ordered container of possibly different types of objects. It is defined between and
objects are separated by .

𝐛𝐫𝐚𝐜𝐤𝐞𝐭𝐬

𝐜𝐨𝐦𝐚𝐬

𝐿 = [𝑥, 𝑦, …]

In [40]:

#Definition
L=[2,3,4]
#Type
type(L)

In [41]:

#Definition by comprehension
L=[x**2 for x in range(0,9)]
L

There are some ways of using indices that are very convenient to access to elements of a (they work for
any ordered container such as strings and tuples).

 returns the -th element of the list .
 returns the elements from the -th (included) to the -th (excluded). The result has the same

type as .
 is the same as .
 is the same as .

 is the list of elements from the -th that you obtain by step of .

We can also concatenate lists using ' '.

𝐥𝐢𝐬𝐭

𝐿[𝑖] 𝑖 𝐿

𝐿[𝑖 : 𝑗] 𝑖 𝑗

𝐿

𝐿[𝑖 :] 𝐿[𝑖 : 𝐥𝐞𝐧(𝐿)]

𝐿[: 𝑗] 𝐿[0 : 𝑗]

𝐿[𝑖 :: 𝑠𝑡𝑒𝑝] 𝑖 𝑠𝑡𝑒𝑝

+

In [6]:

#Changing the i-th element
L=[1,2,3,4,5,6]
L[3]=12
print(L)

In [7]:

#Accessing to an element of the list using the index
L=[1,2,3,4,5,6]
L[2::3]

Out[40]:

list

Out[41]:

[0, 1, 4, 9, 16, 25, 36, 49, 64]

[1, 2, 3, 12, 5, 6]

Out[7]:

[3, 6]

30/09/2019 Lecture+2.+Containers+and+for+loops.

localhost:8888/nbconvert/html/Dropbox (ICR)/teaching - locale/Introduction to Programming/Lecture 2/Lecture%2B2.%2BContainers%2Band%2Bfor%2Bloop… 5/8

In [8]:

#Concatenation
L=[1,2,3,4,5,6]
M=['horse','dog']
N=L+M
print(N)

Here we list some built-in methods to deal with lists.

 returns the number of occurences of the object .
 returns the first index for which .
 inserts the object at the -th place, shifting the rest of the list to the right.

 removes from the first occurence of .
 returns the corresponding value and removes it from .

 writes backward (it changes).
 reorders according to the lexicographic order of the eements. The elements should all be

of the same type.

𝐿. 𝐜𝐨𝐮𝐧𝐭(𝑜𝑏𝑗) 𝑜𝑏𝑗

𝐿. 𝐢𝐧𝐝𝐞𝐱(𝑣𝑎𝑙𝑢𝑒) 𝑖 𝐿[𝑖] = 𝑣𝑎𝑙𝑢𝑒

𝐿. 𝐢𝐧𝐬𝐞𝐫𝐭(𝑖, 𝑜𝑏𝑗) 𝑜𝑏𝑗 𝑖

𝐿. 𝐫𝐞𝐦𝐨𝐯𝐞(𝑣𝑎𝑙𝑢𝑒) 𝐿 𝑣𝑎𝑙𝑢𝑒

𝐿. 𝐩𝐨𝐩(𝑖𝑛𝑑𝑒𝑥) 𝐿

𝐿. 𝐫𝐞𝐯𝐞𝐫𝐬𝐞() 𝐿 𝐿

𝐿. 𝐬𝐨𝐫𝐭(𝐿) 𝐿

In [10]:

L=['1','5','2','horse','3']
L.sort()
print(L)

Range
Ranges are very specific types of containers.

You typically create a range by calling .

This will create a range of integer numbers from (included) to (excluded) by steps of length .

You can also call and by defaut and you can also call with
 and by defaut.

𝐫𝐚𝐧𝐠𝐞(𝑠𝑡𝑎𝑟𝑡, 𝑠𝑡𝑜𝑝, 𝑠𝑡𝑒𝑝)

𝑠𝑡𝑎𝑟𝑡 𝑠𝑡𝑜𝑝 𝑠𝑡𝑒𝑝

𝐫𝐚𝐧𝐠𝐞(𝑠𝑡𝑎𝑟𝑡, 𝑠𝑡𝑜𝑝) 𝑠𝑡𝑒𝑝 = 1 𝐫𝐚𝐧𝐠𝐞(𝑠𝑡𝑜𝑝)

𝑠𝑡𝑎𝑟𝑡 = 0 𝑠𝑡𝑒𝑝 = 1

In [46]:

#Wait, is this really working?
range(1,100,2)

It is not "really" an object per se, one should rather think about it as a potential list of integers. You can still
ask if is in a range object.𝑠𝑜𝑚𝑒𝑡ℎ𝑖𝑛𝑔

[1, 2, 3, 4, 5, 6, 'horse', 'dog']

['1', '2', '3', '5', 'horse']

Out[46]:

range(1, 100, 2)

30/09/2019 Lecture+2.+Containers+and+for+loops.

localhost:8888/nbconvert/html/Dropbox (ICR)/teaching - locale/Introduction to Programming/Lecture 2/Lecture%2B2.%2BContainers%2Band%2Bfor%2Bloop… 6/8

In [19]:

#Is a value in the range?
r=range(1,100,2)
c=12
print(12 in r)

Differences and links among data structures
A dictionnary is a very convenient way to store/update/erase some information about specific keys.
However, it is a rather complicated object compared to the other data structures and should therefore
be used wisely.
A string of characters is a very specific object. It is the best way to communicate with the operator
running the code. Using the method.
Strings and tuples are non-mutable objects. There is no built-in method to change their values.

𝐟𝐨𝐫𝐦𝐚𝐭

Sets, dictionnaries and lists are mutable objects.

There are plenty of built-in methods to change them.

Be careful, as we have seen before the "=" sign is a re-assignment function in case of mutable objects.

To copy a complex object we need to use the method instead.

The counterpart of the mutability is a slightly slower access to the data.

𝐜𝐨𝐩𝐲

In [13]:

Effects of type functions.
L=[1,2,1,2,1,3,4,2,3]
c=list(set(L))
print(c)

"for" loops
When you have to do a repetitive task, it is very convenient to use a loop. The standard statement is as
follows.

 :

and then line break and your instructions. Like any ' ' statement you will need to indent your instructions.

 is any (non-protected) name for your variable and is a container.

𝐟𝐨𝐫

𝐟𝐨𝐫 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝐢𝐧 𝑠𝑜𝑚𝑒𝑡ℎ𝑖𝑛𝑔

:

𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝑠𝑜𝑚𝑒𝑡ℎ𝑖𝑛𝑔

False

[1, 2, 3, 4]

30/09/2019 Lecture+2.+Containers+and+for+loops.

localhost:8888/nbconvert/html/Dropbox (ICR)/teaching - locale/Introduction to Programming/Lecture 2/Lecture%2B2.%2BContainers%2Band%2Bfor%2Bloop… 7/8

In [50]:

#First example of loop
for x in range(0,20):
 print(x,end=" ")

In [51]:

#Comparison with a while loop
x=0
while x<20:
 print(x,end=" ")
 x+=1

In [52]:

Use of loops for different containers

for x in {0,1,2}:#Set
 print(x,end=' ')
print('')
for x in 'Introductiontoprogramming':#Strings
 print(x,end=' ')
print('')
for x in list('Introductiontoprogramming'):#Lists
 print(x,end=' ')

When going through a list using a loop you may want to have both the value and its index.𝐿 𝐟𝐨𝐫

In [18]:

First way to do it.
L=['1','5','2','horse','3']
for index in range(0,len(L)):
 print("L[{}]={}".format(index,L[index]))

You can also use the following notation :. In this case you will have
 during the execution of the loop.

𝐟𝐨𝐫 𝑖𝑛𝑑𝑒𝑥, 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝐢𝐧 𝐿

𝐿[𝑖𝑛𝑑𝑒𝑥] = 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

0 1 2
I n t r o d u c t i o n t o p r o g r a m m i n g
I n t r o d u c t i o n t o p r o g r a m m i n g

L[0]=1
L[1]=5
L[2]=2
L[3]=horse
L[4]=3

30/09/2019 Lecture+2.+Containers+and+for+loops.

localhost:8888/nbconvert/html/Dropbox (ICR)/teaching - locale/Introduction to Programming/Lecture 2/Lecture%2B2.%2BContainers%2Band%2Bfor%2Bloop… 8/8

In [54]:

for index,variable in enumerate(L): # Use the enumerate function to access the
tuples (i,L[i])
 print("L[{}]={}".format(index,variable))

You can go out of a loop. You do it using .𝐟𝐨𝐫 𝐛𝐫𝐞𝐚𝐤

In [55]:

for x in range(0,9):
 if x>6:
 break
 print(x,end=" ")

In [56]:

for y in range(0,9):
 for x in range(0,9):
 if x>6:
 break # You only break out of the loop you are in.
 print(10*y+x,end=" ")

L[0]=1
L[1]=2
L[2]=1
L[3]=2
L[4]=1
L[5]=3
L[6]=4
L[7]=2
L[8]=3

0 1 2 3 4 5 6

0 1 2 3 4 5 6 10 11 12 13 14 15 16 20 21 22 23 24 25 26 30 31 32 33
34 35 36 40 41 42 43 44 45 46 50 51 52 53 54 55 56 60 61 62 63 64 65
66 70 71 72 73 74 75 76 80 81 82 83 84 85 86

