
23/09/2019 Lecture+2.+Containers+and+for+loops.

localhost:8888/nbconvert/html/Dropbox (ICR)/locale - teaching/Introduction to programming/Lecture%2B2.%2BContainers%2Band%2Bfor%2Bloops..ipynb?… 1/18

Introduction to programming.
Lecturers : Giovanni Casini (giovanni.casini@uni.lu), Xavier Parent (xavier.parent@uni.lu)

The slides and the handout have been obtained modifying the materials by Clément Guérin

What we have seen in the first lecture:

Some data types of objects:
Integers (int)
real numbers (float)
boolean (bool)
strings (str, just mentioned)

Some functions:
input
print

if elif else
while

What we are going to see in this lecture:

Distinction between and
introduce more :

Integers (int)
real numbers (float)
boolean (bool)
strings (str)
tuples (tuple)
set (set)
dictionaries (dict)
Lists
Range

Introduction to

𝐟𝐮𝐧𝐜𝐭𝐢𝐨𝐧𝐬 𝐦𝐞𝐭𝐡𝐨𝐝𝐬

𝐝𝐚𝐭𝐚𝐭𝐲𝐩𝐞𝐬

⇐

⇐

⇐

⇐

⇐

⇐

𝐝𝐚𝐭𝐚𝐬𝐭𝐫𝐮𝐜𝐭𝐮𝐫𝐞𝐬

𝐋𝐨𝐨𝐩𝐬

Preliminary remark : Function vs. Method

23/09/2019 Lecture+2.+Containers+and+for+loops.

localhost:8888/nbconvert/html/Dropbox (ICR)/locale - teaching/Introduction to programming/Lecture%2B2.%2BContainers%2Band%2Bfor%2Bloops..ipynb?… 2/18

Functions :
A function is a block of code to preform a specific task.

All functions have a numbere of arguments ().

On exit, a function can or can not return one or more values.

We have already seen some functions like input and print.

𝑛 𝑛 ≥ 0

Methods :
Methods in python are very similar to functions except for some major differences.

A method is called on an object (or a class, when we will introduce them)
The method is used for the object for which it is called.
The method can alter the object’s state. Functions usually do not do it.

In [13]:

st='ertl'
c=len(st)# Function.
len is called, and st is the argument of the function len.
print(c)
st.index('r') # Method.
index is called associated to the string st, and it is asked to give the posit
ion of 'r' inside the string st

Later we will learn to define new functions and new methods.

Remember that functions are defined as independant objects whereas a method is always defined within a
type of objects, and does not "exist" out of it.

Functions and methods may return a value (like) or do something (like).

They can also modify some objects.

Neither functions or methods need to be "functions" in the mathematical sense, i.e. objects that take some
parameters and return a value.

𝐥𝐞𝐧 𝐩𝐫𝐢𝐧𝐭

Special Types: Containers

4

Out[13]:

1

23/09/2019 Lecture+2.+Containers+and+for+loops.

localhost:8888/nbconvert/html/Dropbox (ICR)/locale - teaching/Introduction to programming/Lecture%2B2.%2BContainers%2Band%2Bfor%2Bloops..ipynb?… 3/18

We have considered and , and introduced of symbols. Now we consider an
advanced class of object types: the .

A container is simply an object that contains other objects. The object types that are considered containers
are:

strings (str)
tuples (tpl)
sets (set)
dictionaries (dict)
Lists
Range

We are going to review some features of the most used containers in Python.

𝐢𝐧𝐭𝐞𝐠𝐞𝐫𝐬 𝐫𝐞𝐚𝐥𝐧𝐮𝐦𝐛𝐞𝐫𝐬 𝐬𝐭𝐫𝐢𝐧𝐠𝐬

𝐜𝐨𝐧𝐭𝐚𝐢𝐧𝐞𝐫𝐬

⇐

⇐

⇐

⇐

⇐

⇐

Strings of characters
A string of characters is an ordered sequence of characters.

The -th element of the string can be accessed (provided that the index is not out of range) by writing .

:

The indexing of a string starts from the position 0.

That is, the first element of a string is in position 0.

𝑠 𝑥𝑦𝑧=′
…

′

𝑖 𝑐 𝑐[𝑖]

𝐑𝐞𝐦𝐞𝐦𝐛𝐞𝐫

In [6]:

c='Introduction'
print(c[1],c[2],c[3],c[4],c[5])# The indexation starts at 0.
print(c[-1]) # We can go backward by using negative indices. They do not start f
rom 0, but from -1.

In [8]:

c='Example'
print(' ',c[0],c[1],c[2],c[3],c[4],c[5],c[6])
print(' ',0,1,2,3,4,5,6)
print('-',7,6,5,4,3,2,1)

n t r o d
n

 E x a m p l e
 0 1 2 3 4 5 6
- 7 6 5 4 3 2 1

23/09/2019 Lecture+2.+Containers+and+for+loops.

localhost:8888/nbconvert/html/Dropbox (ICR)/locale - teaching/Introduction to programming/Lecture%2B2.%2BContainers%2Band%2Bfor%2Bloops..ipynb?… 4/18

In [7]:

len(c) #The len function gives the length (cardinal) of the container.

In [16]:

c='Example'
print(len(c)) #The len function gives the length (cardinal) of the container.
print(c[0],c[1],c[2],c[3],c[4],c[5],c[6])
print(c[-len(c)],c[-len(c)+1],c[-len(c)+2])

In [10]:

c='Example'
c+=' of union of strings' #The + command for strings means
 #concatenation.
print(c)

You may have noticed that to define strings I sometimes use single quote ' or double quote ".

There is no difference between both in terms of formal interpretation.

Convention: one should only use double quotes when you want to directly print the sentence as an output in
order to speak to the operator (in the or functions) and always use single quotes when your are
simply defining a genuine string of characters not to be printed as an output.

If you use triple quotes, the output will respect the line breaks in the code.

𝐢𝐧𝐩𝐮𝐭 𝐩𝐫𝐢𝐧𝐭

Out[7]:

12

7
E x a m p l e
E x a

Out[10]:

'Example of union of strings'

23/09/2019 Lecture+2.+Containers+and+for+loops.

localhost:8888/nbconvert/html/Dropbox (ICR)/locale - teaching/Introduction to programming/Lecture%2B2.%2BContainers%2Band%2Bfor%2Bloops..ipynb?… 5/18

In [18]:

#one, two, three single quotes or double quotes.
c='a string'
print(c)
c="a string" # single and double quotes are the same.
print(c)

c='''a string very very very veryvery very very very
very very very very very very very very
very very very very very very very very long ''' #Triple allows you to directly
print line break.
print(c)
c="""a string very very very veryvery very very very
very very very very very very very very
very very very very very very very very long """
print(c)

We can check whether some simbol or sub-string occurs in a string.

In [19]:

#Contains
c='a string'
print('s' in c)
print('z' in c)
print('stri' in c)

You can select a sub-string of a string specifying an interval [n:m] of indexes.

In [21]:

#You can access to a substring out of a string.
c='''a string very very very veryvery very very very
very very very very very very very very
very very very very very very very very long '''
print(c)
print(c[2:10])

a string
a string
a string very very very veryvery very very very
very very very very very very very very
very very very very very very very very long
a string very very very veryvery very very very
very very very very very very very very
very very very very very very very very long

True
False
True

a string very very very veryvery very very very
very very very very very very very very
very very very very very very very very long
string v

23/09/2019 Lecture+2.+Containers+and+for+loops.

localhost:8888/nbconvert/html/Dropbox (ICR)/locale - teaching/Introduction to programming/Lecture%2B2.%2BContainers%2Band%2Bfor%2Bloops..ipynb?… 6/18

In [22]:

#No assignment is possible.
c[2]='s'

We add some methods concerning strings that you may find useful (call or read the Python
documentation for more information).

Let be a string.

, where is an integer, returns a string with n concatened copies of . It is exactly the same as
.

 returns the first index (if it exists) where the substring starts.
 count the number of (non-overlapping) occurences of the string in .

 returns a string which is a copy of where every occurence of the string st1 has
been replaced by st2.

𝐡𝐞𝐥𝐩(𝐬𝐭𝐫)

𝑐

𝑐 ∗ 𝑛 𝑛 𝑐

𝑐 + ⋯ + 𝑐

𝑛times

𝑐. 𝐟𝐢𝐧𝐝 𝑐𝑎)(′ 𝑟′ 𝑖 𝑐[𝑖] 𝑐𝑎=′ 𝑟′

𝑐. 𝐜𝐨𝐮𝐧𝐭(𝑠𝑡) 𝑠𝑡 𝑐

𝑐. 𝐫𝐞𝐩𝐥𝐚𝐜𝐞(𝑠𝑡1, 𝑠𝑡2) 𝑐

In [23]:

c=3*'121'
print(c)
print(c.count('12'))

In [81]:

c=3*'121'
c=c.replace('11','ab')
print(c)

We can compare strings by lexicographic order.

--

TypeError Traceback (most recent cal
l last)
<ipython-input-22-cf50fef9b208> in <module>
 1 #No assignment is possible.
----> 2 c[2]='s'

TypeError: 'str' object does not support item assignment

121121121
3

12ab2ab21

23/09/2019 Lecture+2.+Containers+and+for+loops.

localhost:8888/nbconvert/html/Dropbox (ICR)/locale - teaching/Introduction to programming/Lecture%2B2.%2BContainers%2Band%2Bfor%2Bloops..ipynb?… 7/18

In [46]:

c='Alfred'
d='Ann'
e='Alfred2'
print(c<d)
print(d<c)
print(c<e)

We can add values to a string using the method𝐟𝐨𝐫𝐦𝐚𝐭

In [17]:

#The "format" method for strings.

c="Les entiers {1} et {0} sont pairs. {1} "

print(c.format(2,4)) # Insert values in a string, the place is given by the numb
er into braces.
c="Les entiers {} et {} sont pairs. {} "
print(c.format(0,2,'truc'))# Insert values in a string.

Tuples
A tuples is a finite sequence of objects of possibly different types.

You can define a tuple as a sequence of objects between and separated by .

This data structure is rigid: you cannot modify a tuple.

However, you can:

consider the concatenation of tuples.
access the length of a tuple by applying the function.
access the elements with an index.
compare two tuple using the lexicographic order

The comparison of tuples is trickier than for strings, since all the compared elements of the tuples must be
of the same type.

Mathematically it is the equivalent of the usual tuple.

𝐩𝐚𝐫𝐞𝐧𝐭𝐡𝐞𝐬𝐞𝐬 𝐜𝐨𝐦𝐦𝐚𝐬

𝐥𝐞𝐧

True
False
True

Les entiers 4 et 2 sont pairs. 4
Les entiers 0 et 2 sont pairs. truc

23/09/2019 Lecture+2.+Containers+and+for+loops.

localhost:8888/nbconvert/html/Dropbox (ICR)/locale - teaching/Introduction to programming/Lecture%2B2.%2BContainers%2Band%2Bfor%2Bloops..ipynb?… 8/18

In [27]:

#Definition of a tuple.
x=(0,1,2,'obj',(1,2))
#Type
type(x)

In [32]:

x=(0,1,2,'obj',(1,2))
We cannot change the tuple assigning new values
x[1]='newvalue'

In [30]:

x=(0,1,2,'obj',(1,2))
#Concatenation
x=x+(2,3,4)
x

In [28]:

x=(0,1,2,'obj',(1,2))
#Computation of the length
len(x)

In [29]:

x=(0,1,2,'obj',(1,2))
#Accessing index
x[3]

Out[27]:

tuple

--

TypeError Traceback (most recent cal
l last)
<ipython-input-32-ecdd8800034d> in <module>
 1 x=(0,1,2,'obj',(1,2))
 2 # We cannot change the tuple assigning new values
----> 3 x[1]='newvalue'

TypeError: 'tuple' object does not support item assignment

Out[30]:

(0, 1, 2, 'obj', (1, 2), 2, 3, 4)

Out[28]:

5

Out[29]:

'obj'

23/09/2019 Lecture+2.+Containers+and+for+loops.

localhost:8888/nbconvert/html/Dropbox (ICR)/locale - teaching/Introduction to programming/Lecture%2B2.%2BContainers%2Band%2Bfor%2Bloops..ipynb?… 9/18

In [39]:

(0,1,3)<(1,1,0) #Comparability

In [40]:

('obj',1,3)<('1',1,0) #Comparability

In [41]:

('obj',1,3)<(1,1,0)

There are not much specific methods associated to tuples.

 returns the number of occurences of the object in .
 returns the first index of occurence of the object in .

𝑥. 𝐜𝐨𝐮𝐧𝐭(𝑜𝑏𝑗) 𝑜𝑏𝑗 𝑥

𝑥. 𝐢𝐧𝐝𝐞𝐱(𝑜𝑏𝑗) 𝑜𝑏𝑗 𝑥

In [42]:

x=(0,1,2,'obj',(1,2))
print(x.count(1))
print(x.index('obj'))

Sets
A set is a finite collection of objects between and separated by .𝐜𝐮𝐫𝐥𝐲 𝐛𝐫𝐚𝐜𝐤𝐞𝐭𝐬 𝐜𝐨𝐦𝐦𝐚𝐬

𝐴 = {𝑥, 𝑦, 𝑧, …}

Out[39]:

True

Out[40]:

False

--

TypeError Traceback (most recent cal
l last)
<ipython-input-41-bf9544542433> in <module>
----> 1 ('obj',1,3)<(1,1,0)

TypeError: '<' not supported between instances of 'str' and 'int'

1
3

23/09/2019 Lecture+2.+Containers+and+for+loops.

localhost:8888/nbconvert/html/Dropbox (ICR)/locale - teaching/Introduction to programming/Lecture%2B2.%2BContainers%2Band%2Bfor%2Bloops..ipynb… 10/18

In [25]:

#Definition of a set.
A={1,2,4,5,6}
#type.
type(A)

It is equivalent to a mathematical set: repetitions and orders do not count.

Consequently also indexing does not work.

Set are comparable by the inclusion relation.

The function gives the cardinality of the set.𝐥𝐞𝐧

In [43]:

Repetition and order do not count.
A={1,2,3,4,5}
B={1,3,1,2,2,5,5,4,4,4,3}
A==B

In [47]:

Index
A={1,2,3,4,5}
print(A[1])

In [28]:

#from strings to set.
c='a set'
set(c)

Out[25]:

set

Out[43]:

True

--

TypeError Traceback (most recent cal
l last)
<ipython-input-47-9045106314ed> in <module>
 1 # Index
 2 A={1,2,3,4,5}
----> 3 print(A[1])

TypeError: 'set' object is not subscriptable

Out[28]:

{' ', 'a', 'e', 's', 't'}

23/09/2019 Lecture+2.+Containers+and+for+loops.

localhost:8888/nbconvert/html/Dropbox (ICR)/locale - teaching/Introduction to programming/Lecture%2B2.%2BContainers%2Band%2Bfor%2Bloops..ipynb… 11/18

In [48]:

The length function computes the cardinality.
A={1,2,3,4,5}
len(A)

Some methods that apply to sets.

The usual set computations hold.

 returns the intersection of and .
 returns the union of and .

 returns .
 returns a copy of .

You may also directly change a set :

 replaces by (does nothing if is in).
 replaces by without the object (does nothing if is not in).

 replaces by .

𝐴. 𝐢𝐧𝐭𝐞𝐫𝐬𝐞𝐜𝐭𝐢𝐨𝐧(𝐵) 𝐴 𝐵

𝐴. 𝐮𝐧𝐢𝐨𝐧(𝐵) 𝐴 𝐵

𝐴. 𝐝𝐢𝐟𝐟𝐞𝐫𝐞𝐧𝐜𝐞(𝐵) 𝐴 ∖ 𝐵

𝐴. 𝐜𝐨𝐩𝐲() 𝐴

𝐴

𝐴. 𝐚𝐝𝐝(𝑎) 𝐴 𝐴 ∪ {𝑎} 𝑎 𝐴

𝐴. 𝐝𝐢𝐬𝐜𝐚𝐫𝐝(𝑎) 𝐴 𝐴 𝑎 𝑎 𝐴

𝐴. 𝐝𝐢𝐟𝐟𝐞𝐫𝐞𝐧𝐜𝐞_𝐮𝐩𝐝𝐚𝐭𝐞(𝐵) 𝐴 𝐴 ∩ 𝐵𝑐

In [30]:

A={1,2,4}
B=A.copy()
print(A,B)
B.discard(2)
print(A,B)

One useful way to define a set in mathematics is by comprehension i.e. . You can do
the same thing in Python. The syntax is the following :

𝐵 := {𝑓(𝑥) ∣ 𝑥 ∈ 𝐴}

𝐵 = {𝐟𝐮𝐧𝐜𝐭𝐢𝐨𝐧(𝑥) 𝐟𝐨𝐫 𝑥 𝐢𝐧 𝐴}

In [50]:

#You may also define a set by comprehension
A={1,2,3}
B={(x+1) for x in A}
B

Out[48]:

5

{1, 2, 4} {1, 2, 4}
{1, 2, 4} {1, 4}

Out[50]:

{2, 3, 4}

23/09/2019 Lecture+2.+Containers+and+for+loops.

localhost:8888/nbconvert/html/Dropbox (ICR)/locale - teaching/Introduction to programming/Lecture%2B2.%2BContainers%2Band%2Bfor%2Bloops..ipynb… 12/18

Dictionaries.
A dictionary or associative table is a very particular container.

It is a collection of items "key:value" where key and value can be any kind of objects, where the statements
are put between and separated from each other by .𝐜𝐮𝐫𝐥𝐲 𝐛𝐫𝐚𝐜𝐤𝐞𝐭𝐬 𝐜𝐨𝐦𝐦𝐚𝐬

𝑐 = {𝑥 : 𝑦, 𝑠 : 𝑡, …}

In [52]:

dico1={'Jean Paul':'jeanpaul@trucmuch.lu',\
 'Fanny':'fanny@trucmuch.lu',\
 'Robert':'robert@trucmuch.lu',\
 'Stephanie': (6812424239),\
 0:2}
#Type
type(dico1)

The function still gives the cardinality.
Indexes cannot be used, but we can use the key to recall the correspondent values.
It is possible to associate new values to the keys.

𝐥𝐞𝐧

In [54]:

dico1={'Jean Paul':'jeanpaul@trucmuch.lu',\
 'Fanny':'fanny@trucmuch.lu',\
 'Robert':'robert@trucmuch.lu',\
 'Stephanie': (6812424239),\
 0:2}
#It is still possible to get the length of a dictionnary.
len(dico1)
#Indexes cannot be used with dictionaries. Instead you ask for a key.
dico1['Jean Paul']
dico1[0]

In [55]:

dico1={'Jean Paul':'jeanpaul@trucmuch.lu',\
 'Fanny':'fanny@trucmuch.lu',\
 'Robert':'robert@trucmuch.lu',\
 'Stephanie': (6812424239),\
 0:2}
#Changing a value in a dictionnary.
dico1['Stephanie']='stephanie@trucmuch.lu'
print(dico1)

Out[52]:

dict

Out[54]:

2

{'Jean Paul': 'jeanpaul@trucmuch.lu', 'Fanny': 'fanny@trucmuch.lu',
'Robert': 'robert@trucmuch.lu', 'Stephanie': 'stephanie@trucmuch.l
u', 0: 2}

23/09/2019 Lecture+2.+Containers+and+for+loops.

localhost:8888/nbconvert/html/Dropbox (ICR)/locale - teaching/Introduction to programming/Lecture%2B2.%2BContainers%2Band%2Bfor%2Bloops..ipynb… 13/18

In [36]:

#What is the effect when you have two items with the same key?
dico2={0:7,'x':'x@trucmuch.lu',0:3}
print(dico2)

Here are some methods that you can use with dictionnaries. Let be a dictionnary.

 returns the items of the dictionnary.
 only returns the keys of the dictionnary.

 only returns the values of the dictionnary.
 returns a dictionnary which is a copy of .

 takes out of the dictionnary the item which has as a key and returns the value
associated to key.

 takes out of the dictionnary the the last inserted item and returns such an item.
 updates with the values of , it adds new items if the keys of

are not in .

𝑑𝑖𝑐

𝑑𝑖𝑐. 𝐢𝐭𝐞𝐦𝐬()

𝑑𝑖𝑐. 𝐤𝐞𝐲𝐬()

𝑑𝑖𝑐. 𝐯𝐚𝐥𝐮𝐞𝐬()

𝑑𝑖𝑐. 𝐜𝐨𝐩𝐲() 𝑑𝑖𝑐

𝑑𝑖𝑐. 𝐩𝐨𝐩(𝑘𝑒𝑦) 𝑘𝑒𝑦

𝑑𝑖𝑐. 𝐩𝐨𝐩𝐢𝐭𝐞𝐦()

𝑑𝑖𝑐. 𝐮𝐩𝐝𝐚𝐭𝐞(𝑛𝑒𝑤𝑑𝑖𝑐) 𝑑𝑖𝑐 𝑛𝑒𝑤𝑑𝑖𝑐 𝑛𝑒𝑤𝑑𝑖𝑐

𝑑𝑖𝑐

In [78]:

dico1={'Jean Paul':'jeanpaul@trucmuch.lu',\
 'Fanny':'fanny@trucmuch.lu',\
 'Robert':'robert@trucmuch.lu',\
 'Stephanie': (6812424239),\
 0:2}
dico2={0:7,'x':'x@trucmuch.lu'}
print(dico1,dico2)
dico1.update(dico2)
print(dico1)

Lists
A list is an ordered container of possibly different types of objects.

It is a sequence of objects between and objects are separated by .

As ofr sets, we can define the content of lists by comprehension.

Most importantly, we can re-assign some value in a list. This is the main difference w.r.t. tuples.

𝐬𝐪𝐮𝐚𝐫𝐞 𝐛𝐫𝐚𝐜𝐤𝐞𝐭𝐬 𝐜𝐨𝐦𝐦𝐚𝐬

{0: 3, 'x': 'x@trucmuch.lu'}

{'Jean Paul': 'jeanpaul@trucmuch.lu', 'Fanny': 'fanny@trucmuch.lu',
'Robert': 'robert@trucmuch.lu', 'Stephanie': 6812424239, 0: 2} {0:
7, 'x': 'x@trucmuch.lu'}
{'Jean Paul': 'jeanpaul@trucmuch.lu', 'Fanny': 'fanny@trucmuch.lu',
'Robert': 'robert@trucmuch.lu', 'Stephanie': 6812424239, 0: 7, 'x':
'x@trucmuch.lu'}

23/09/2019 Lecture+2.+Containers+and+for+loops.

localhost:8888/nbconvert/html/Dropbox (ICR)/locale - teaching/Introduction to programming/Lecture%2B2.%2BContainers%2Band%2Bfor%2Bloops..ipynb… 14/18

In [40]:

#Definition
L=[2,3,4]
#Type
type(L)

In [67]:

#Definition in comprehension
C={1,2,3}
L=[x**2 for x in C]# ''**'' is the power operator
L

There are some ways using indices that are very convenient to access to elements of a (they work for
any ordered container such as strings and tuples).

 returns the -th element of the list .
 returns the elements from the -th (included) to the -th (excluded). The result has the same

type as .
 is the same as .
 is the same as .

 is the list of elements from the -th that you obtain by steps.

We can also concatenate lists.

𝐥𝐢𝐬𝐭

𝐿[𝑖] 𝑖 𝐿

𝐿[𝑖 : 𝑗] 𝑖 𝑗

𝐿

𝐿[𝑖 :] 𝐿[𝑖 : 𝐥𝐞𝐧(𝐿) + 1]

𝐿[: 𝑗] 𝐿[0 : 𝑗]

𝐿[𝑖 :: 𝑛] 𝑖 𝑛

In [71]:

#Changing the i-th element
L=[1,2,3,4,5,6]
L[3]=12
L

In [70]:

#Accessing to an element of the list using the index
L=[1,2,3,4,5,6]
L[2::3]

Out[40]:

list

Out[67]:

[1, 4, 9]

Out[71]:

[1, 2, 3, 12, 5, 6]

Out[70]:

[3, 6]

23/09/2019 Lecture+2.+Containers+and+for+loops.

localhost:8888/nbconvert/html/Dropbox (ICR)/locale - teaching/Introduction to programming/Lecture%2B2.%2BContainers%2Band%2Bfor%2Bloops..ipynb… 15/18

In [75]:

#Concatenation
L=[1,2,3,4,5,6]
M=['horse','dog']
N=L+M
print(N)

Here we list some built-in methods to deal with lists.

 returns the number of occurences of the object .
 returns the first index for which .
 inserts the object at the -th place, shifting the rest of the list to the right.

 removes from the first occurence of .
 returns the corresponding value and removes it from .

 writes backward (it changes).
 reorders according to the lexicographic order of the lements. The elements should all be of

the same type.

𝐿. 𝐜𝐨𝐮𝐧𝐭(𝑜𝑏𝑗) 𝑜𝑏𝑗

𝐿. 𝐢𝐧𝐝𝐞𝐱(𝑣𝑎𝑙𝑢𝑒) 𝑖 𝐿[𝑖] = 𝑣𝑎𝑙𝑢𝑒

𝐿. 𝐢𝐧𝐬𝐞𝐫𝐭(𝑖, 𝑜𝑏𝑗) 𝑜𝑏𝑗 𝑖

𝐿. 𝐫𝐞𝐦𝐨𝐯𝐞(𝑣𝑎𝑙𝑢𝑒) 𝐿 𝑣𝑎𝑙𝑢𝑒

𝐿. 𝐩𝐨𝐩(𝑖𝑛𝑑𝑒𝑥) 𝐿

𝐿. 𝐫𝐞𝐯𝐞𝐫𝐬𝐞() 𝐿 𝐿

𝐿. 𝐬𝐨𝐫𝐭() 𝐿

In [77]:

L=['1','5','2','horse','3']
L.sort()
L

Range
Ranges are very specific types of containers.

You typically create a range by calling .

This will create a range of integer numbers from (included) to (excluded) by steps of length .

You can also call and by defaut and you can also call and
 by defaut.

𝐫𝐚𝐧𝐠𝐞(𝑠𝑡𝑎𝑟𝑡, 𝑠𝑡𝑜𝑝, 𝑠𝑡𝑒𝑝)

𝑠𝑡𝑎𝑟𝑡 𝑠𝑡𝑜𝑝 𝑠𝑡𝑒𝑝

𝐫𝐚𝐧𝐠𝐞(𝑠𝑡𝑎𝑟𝑡, 𝑠𝑡𝑜𝑝) 𝑠𝑡𝑒𝑝 = 1 𝐫𝐚𝐧𝐠𝐞(𝑠𝑡𝑜𝑝)

𝑠𝑡𝑎𝑟𝑡, 𝑠𝑡𝑒𝑝 = 0, 1

In [46]:

#Wait, is this really working?
range(1,100,2)

It is not "really" an object per se, one should rather think about it as a potential list of integers. You can still
ask if is in a range object.𝑠𝑜𝑚𝑒𝑡ℎ𝑖𝑛𝑔

[1, 2, 3, 4, 5, 6, 'horse', 'dog']

Out[77]:

['1', '2', '3', '5', 'horse']

Out[46]:

range(1, 100, 2)

23/09/2019 Lecture+2.+Containers+and+for+loops.

localhost:8888/nbconvert/html/Dropbox (ICR)/locale - teaching/Introduction to programming/Lecture%2B2.%2BContainers%2Band%2Bfor%2Bloops..ipynb… 16/18

Differences and links between data structures
A dictionnary is a very convenient way to store/update/erase some information about specific keys.
However, it is a rather complicated object compared to the other data structures and should therefore
be used wisely.
A string of characters is a very specific object. It is the best way to communicate with the operator
running the code. Using the method.
Strings and tuples are non-mutable objects. There is no built-in method to change their values.

𝐟𝐨𝐫𝐦𝐚𝐭

In [47]:

#You can of course change a variable of type 'str' or 'tuple'.
x=(1,2,3)
x=x+x
print(x)

Sets, dictionnaries and lists are mutable objects.

There are plenty of built-in methods to change them.

Be careful, as we have seen before the "=" sign is a re-assignment function in case of mutable objects.
The good way to deal with this problem is to use the method instead.

The counterpart of the mutability is a slightly slower access to the data.

𝐜𝐨𝐩𝐲

In [83]:

Effects of type functions.
L=[1,2,1,2,1,3,4,2,3]
list(set(L))

"for" loops
When you have to do a repetitive task, it is very convenient to use a loop. The standard statement is as
follows.

 :

and then line break and your instructions. Like any statement you will need to indent your instructions.
 is any (non-protected) name for your variable and is a container.

𝐟𝐨𝐫

𝐟𝐨𝐫 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝐢𝐧 𝑠𝑜𝑚𝑒𝑡ℎ𝑖𝑛𝑔

:

𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝑠𝑜𝑚𝑒𝑡ℎ𝑖𝑛𝑔

In [50]:

#First example of loop
for x in range(0,20):
 print(x,end=" ")

(1, 2, 3, 1, 2, 3)

Out[83]:

[1, 2, 3, 4]

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

23/09/2019 Lecture+2.+Containers+and+for+loops.

localhost:8888/nbconvert/html/Dropbox (ICR)/locale - teaching/Introduction to programming/Lecture%2B2.%2BContainers%2Band%2Bfor%2Bloops..ipynb… 17/18

Beware that does not return a convenient type as a value.

Anyway you can still convert it as a list. It appears that if the value where a list the call above would be
sligthly slower.

𝐫𝐚𝐧𝐠𝐞

In [51]:

#Comparison with a while loop
x=0
while x<20:
 print(x,end=" ")
 x+=1

In [52]:

Use of loops for different containers

for x in {0,1,2}:#Set
 print(x,end=' ')
print('')
for x in 'Introductiontoprogramming':#Strings
 print(x,end=' ')
print('')
for x in list('Introductiontoprogramming'):#Lists
 print(x,end=' ')

When going through a list using a loop you may want to have both the value and its index.𝐿 𝐟𝐨𝐫

In [53]:

First way to do it.
for index in range(0,len(L)):
 print("L[{}]={}".format(index,L[index]))

You can go out of a loop. You do it using .

The statement can be used in both and loops.

If you are using nested loops, the break statement stops the execution of the innermost loop and start
executing the next line of code after the block.

𝐟𝐨𝐫 𝐛𝐫𝐞𝐚𝐤

𝐛𝐫𝐞𝐚𝐤 𝐰𝐡𝐢𝐥𝐞 𝐟𝐨𝐫

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

0 1 2
I n t r o d u c t i o n t o p r o g r a m m i n g
I n t r o d u c t i o n t o p r o g r a m m i n g

L[0]=1
L[1]=2
L[2]=1
L[3]=2
L[4]=1
L[5]=3
L[6]=4
L[7]=2
L[8]=3

23/09/2019 Lecture+2.+Containers+and+for+loops.

localhost:8888/nbconvert/html/Dropbox (ICR)/locale - teaching/Introduction to programming/Lecture%2B2.%2BContainers%2Band%2Bfor%2Bloops..ipynb… 18/18

In [55]:

for x in range(0,9):
 if x>6:
 break
 print(x,end=" ")

In [56]:

for y in range(0,9):
 for x in range(0,9):
 if x>6:
 break # You only break out of the loop you are in.
 print(10*y+x,end=" ")

0 1 2 3 4 5 6

0 1 2 3 4 5 6 10 11 12 13 14 15 16 20 21 22 23 24 25 26 30 31 32 33
34 35 36 40 41 42 43 44 45 46 50 51 52 53 54 55 56 60 61 62 63 64 65
66 70 71 72 73 74 75 76 80 81 82 83 84 85 86

