
28/10/2019 Lecture+7+Visualization.+Turtle+and+Pyplot

localhost:8888/nbconvert/html/Dropbox (ICR)/ICR Team Folder/Education/Int2Prog/Lecture 7/Lecture%2B7%2BVisualization.%2BTurtle%2Band%2BPyplot… 1/26

Introduction to programming
Lecture 7:

Lecturers: Giovanni Casini (giovanni.casini@uni.lu) and Xavier Parent (xavier.parent@uni.lu)

Revised version of material from Clément Guérin

Turtle
The turtle module is an introductory graphic tool.

You can use it to make nice figures and diagrams. It is a module, you need to call it with the usual command:

from turtle import *

or

import turtle

Working with turtle, a graphic console will appear. On this console there will a an arrow.

The arrow, that is the turtle, can be moved through the console, drawing lines.

You should think of the turtle as a pencil. You can move the pencil using two methods :

Either you move forward in the direction of the turtle by a distance , calling ; you can
change the direction of the turtle or , where is the number of degrees;
or you move to given coordinates by calling . The visible coordinates go from
to .

Note: The command does not affect the direction of the turtle.

If you don't need to keep your drawing on screen, use the command each time you draw
something. It will allow you to smoothly exit the drawing screen. You can also keep your drawing open and
use the command to start a drawing anew.

 will clean the grahical console.

𝑑 𝐟𝐨𝐫𝐰𝐚𝐫𝐝(𝑑)

𝐥𝐞𝐟𝐭(𝜃) 𝐫𝐢𝐠𝐡𝐭(𝜃) 𝜃

(𝑥, 𝑦) 𝐬𝐞𝐭𝐩𝐨𝐬(𝑥, 𝑦) −350

350

𝐬𝐞𝐭𝐩𝐨𝐬(𝑥, 𝑦)

𝐞𝐱𝐢𝐭𝐨𝐧𝐜𝐥𝐢𝐜𝐤()

𝐫𝐞𝐬𝐞𝐭()

𝐜𝐥𝐞𝐚𝐫𝐬𝐜𝐫𝐞𝐞𝐧()

In [3]:

#square
import turtle

turtle.clearscreen()
my_turtle=turtle.Turtle()
my_turtle.forward(100)
my_turtle.left(90)
my_turtle.forward(100)
my_turtle.left(90)
my_turtle.forward(100)
my_turtle.left(90)
my_turtle.forward(100)

28/10/2019 Lecture+7+Visualization.+Turtle+and+Pyplot

localhost:8888/nbconvert/html/Dropbox (ICR)/ICR Team Folder/Education/Int2Prog/Lecture 7/Lecture%2B7%2BVisualization.%2BTurtle%2Band%2BPyplot… 2/26

In [4]:

#hexagon
import turtle

turtle.clearscreen()
my_turtle=turtle.Turtle()
my_turtle.forward(100)
my_turtle.left(60)
my_turtle.forward(100)
my_turtle.left(60)
my_turtle.forward(100)
my_turtle.left(60)
my_turtle.forward(100)
my_turtle.left(60)
my_turtle.forward(100)
my_turtle.left(60)
my_turtle.forward(100)

In [1]:

#hexagon usinf a For loop
import turtle

my_turtle=turtle.Turtle()
for x in range(0,6):
 my_turtle.forward(100)
 my_turtle.left(60)

In [2]:

#setpos method
import turtle

turtle.clearscreen()
turtle.setpos(100,0)
turtle.setpos(100,100)
turtle.setpos(0,100)
turtle.setpos(0,0)

Exercise:
write a program that draws any regular polygon, after asking from the user the number of sides.

28/10/2019 Lecture+7+Visualization.+Turtle+and+Pyplot

localhost:8888/nbconvert/html/Dropbox (ICR)/ICR Team Folder/Education/Int2Prog/Lecture 7/Lecture%2B7%2BVisualization.%2BTurtle%2Band%2BPyplot… 3/26

In [22]:

#Exercise

import turtle

n=int(input('how many sides?'))
d=360/n
turtle.clearscreen()
my_turtle=turtle.Turtle()
for x in range(0,n):
 my_turtle.forward(100)
 my_turtle.left(d)

If you want to move the turtle without drawing a line, you need to call the command

After this, you should write the command

in order to be able to write again.

You can also set a speed of the turtle with speed(),

and the colour of the lines with color('*nameofcolour')

𝐩𝐞𝐧𝐮𝐩()

𝐩𝐞𝐧𝐝𝐨𝐰𝐧()

In [1]:

#Equilateral Triangle

from turtle import *

clearscreen()
speed(1)
penup() # If you don't do this you will write behind the turtle
setpos(-100,-100)
setpos(222,120)# The turtle just moves to (-100,-100) without drawing any line
setpos(-100,-100)
color('forestgreen')
pendown() # Now you will write
forward(300) #Move forward in the direction of the turtle
left(120) #Turn left by 120 degrees
forward(300)
left(120)
forward(300)

Exercise:
Write a function that given the arguments: (lx,ly,x,y) draw the rectangle with bottom-left corner at (x,y) of
horizontal length lx and vertical length ly

how many sides?20

28/10/2019 Lecture+7+Visualization.+Turtle+and+Pyplot

localhost:8888/nbconvert/html/Dropbox (ICR)/ICR Team Folder/Education/Int2Prog/Lecture 7/Lecture%2B7%2BVisualization.%2BTurtle%2Band%2BPyplot… 4/26

In [26]:

#Exercise : write a function that given the arguments : (lx,ly,x=0,y=0)
#draw the rectangle with bottom-left corner at (x,y) by defaut (0,0)
#of horizontal length lx and vertical length ly

#Solution

from turtle import *

clearscreen()
def rect(lx,ly,x,y):
 penup()
 setpos(x,y) #Make sure you don't draw any unwanted lines
 pendown()
 forward(lx)
 left(90)
 forward(ly)
 left(90)
 forward(lx)
 left(90)
 forward(ly)
 left(90)
reset()

#rect(200,100,-22,-100)

a=int(input('give the horizontal lenght:'))
b=int(input('give the vertical lenght:'))
c=int(input('give the initial x-coordinate:'))
d=int(input('give the initial y-coordinate:'))

rect(a,b,c,d)

More commands
Let's see a few commands that are useful tools to draw.

It is not meant to be exhaustive. You should have a look on the documentation there for more
commands : https://docs.python.org/3.6/library/turtle.html#turtle.reset
(https://docs.python.org/3.6/library/turtle.html#turtle.reset).

give the horizontal lenght:200
give the vertical lenght:100
give the initial x-coordinate:10
give the initial y-coordinate:20

https://docs.python.org/3.6/library/turtle.html#turtle.reset

28/10/2019 Lecture+7+Visualization.+Turtle+and+Pyplot

localhost:8888/nbconvert/html/Dropbox (ICR)/ICR Team Folder/Education/Int2Prog/Lecture 7/Lecture%2B7%2BVisualization.%2BTurtle%2Band%2BPyplot… 5/26

Circle
We can draw a circle specifying a radius

circle(d)

The cicle will be drawn tangent to the direction and position of the turtle.

If the argument is positive, the turtle will move counterclockwise,

clockwise otherwise.

𝑑

Fill and colors
You can fill a figure with a color.

To do this you need to call

 (or any color you want to fill with)

then draw with the turtle a closed figure and then call

.

𝐟𝐢𝐥𝐥𝐜𝐨𝐥𝐨𝐫 𝑟𝑒)(′ 𝑑′

𝐛𝐞𝐠𝐢𝐧_𝐟𝐢𝐥𝐥()

𝐞𝐧𝐝_𝐟𝐢𝐥𝐥()

28/10/2019 Lecture+7+Visualization.+Turtle+and+Pyplot

localhost:8888/nbconvert/html/Dropbox (ICR)/ICR Team Folder/Education/Int2Prog/Lecture 7/Lecture%2B7%2BVisualization.%2BTurtle%2Band%2BPyplot… 6/26

In [3]:

Radioactivity sign
from turtle import *

clearscreen()
reset()
speed(6)
fillcolor('yellow')
penup()
setpos(300,0)
left(90)
pendown()
begin_fill()
circle(300)# Draw the circle of given radius tangent to turtle (direction and po
sition)
end_fill()

right(90)

penup()
fillcolor('black')
setpos(0,0) # The turtle just moves to (0,0) without drawing any line
begin_fill()
pendown() # Now you will write
forward(300) #Move forward in the direction of the turtle
left(120) #Turn left by 120 degrees
forward(300)
left(120)
forward(300)
end_fill()
begin_fill()
pendown() # Now you will write
forward(300) #Move forward in the direction of the turtle
left(120) #Turn left by 120 degrees
forward(300)
left(120)
forward(300)
end_fill()
begin_fill()
pendown() # Now you will write
forward(300) #Move forward in the direction of the turtle
left(120) #Turn left by 120 degrees
forward(300)
left(120)
forward(300)
end_fill()

It should be remarked that :

You can draw with a color and fill with another color.
The "inside" of the turtle is colored by the color used to fill figures, the "perimeter" of the turtle is
colored with the color used to draw the lines.

28/10/2019 Lecture+7+Visualization.+Turtle+and+Pyplot

localhost:8888/nbconvert/html/Dropbox (ICR)/ICR Team Folder/Education/Int2Prog/Lecture 7/Lecture%2B7%2BVisualization.%2BTurtle%2Band%2BPyplot… 7/26

Dealing with the pace of the drawing
By default the turtle is quite slow. We could have guessed it because of its name.

The reason for this is that turtle is supposed to help the learning student to see what the turtle is doing, if the
turtle is moving too fast, you don't really see the process happening.

It is possible to temper with the speed of the turtle.

As mentioned above, we can use the command where is an integer between and (the
defaut speed is). is slow and is fast. means "no animation".

𝐬𝐩𝐞𝐞𝐝(𝑥) 𝑥 0 10

6 𝑥 = 1 𝑥 = 10 𝑥 = 0

In [6]:

from turtle import *

clearscreen()

speed(1)# slow

#Spiral
N=28
L=10
for x in range(0,N):
 forward(L)
 left(90)
 forward(L)
 left(90)
 L*=1.15

In [7]:

from turtle import *

clearscreen()

speed(10)# fast

#Spiral
N=28
L=10
for x in range(0,N):
 forward(L)
 left(90)
 forward(L)
 left(90)
 L*=1.15

28/10/2019 Lecture+7+Visualization.+Turtle+and+Pyplot

localhost:8888/nbconvert/html/Dropbox (ICR)/ICR Team Folder/Education/Int2Prog/Lecture 7/Lecture%2B7%2BVisualization.%2BTurtle%2Band%2BPyplot… 8/26

In [34]:

reset()

speed(0)# fast

#Spiral
N=28
L=10
for x in range(0,N):
 forward(L)
 left(90)
 forward(L)
 left(90)
 L*=1.15

28/10/2019 Lecture+7+Visualization.+Turtle+and+Pyplot

localhost:8888/nbconvert/html/Dropbox (ICR)/ICR Team Folder/Education/Int2Prog/Lecture 7/Lecture%2B7%2BVisualization.%2BTurtle%2Band%2BPyplot… 9/26

In [9]:

Radioactivity sign
from turtle import *

clearscreen()
reset()
speed(0)
fillcolor('yellow')
penup()
setpos(300,0)
left(90)
pendown()
begin_fill()
circle(300)# Draw the circle of given radius tangent to turtle (direction and po
sition)
end_fill()

right(90)

penup()
fillcolor('black')
setpos(0,0) # The turtle just moves to (0,0) without drawing any line
begin_fill()
pendown() # Now you will write
forward(300) #Move forward in the direction of the turtle
left(120) #Turn left by 120 degrees
forward(300)
left(120)
forward(300)
end_fill()
begin_fill()
pendown() # Now you will write
forward(300) #Move forward in the direction of the turtle
left(120) #Turn left by 120 degrees
forward(300)
left(120)
forward(300)
end_fill()
begin_fill()
pendown() # Now you will write
forward(300) #Move forward in the direction of the turtle
left(120) #Turn left by 120 degrees
forward(300)
left(120)
forward(300)
end_fill()

Even though there is no animation, you can see that with it still takes some time to draw.

By calling you are just saying that you don't want to animate the move of your turtle, but it still
stops at each step. The duration comes from the small stops that it makes between moves.

Of course, the more steps you have the more time it takes (even though the turtle moves instantaneously).

𝐬𝐩𝐞𝐞𝐝(0)

𝐬𝐩𝐞𝐞𝐝(0)

28/10/2019 Lecture+7+Visualization.+Turtle+and+Pyplot

localhost:8888/nbconvert/html/Dropbox (ICR)/ICR Team Folder/Education/Int2Prog/Lecture 7/Lecture%2B7%2BVisualization.%2BTurtle%2Band%2BPypl… 10/26

When you get one million steps to finish a drawing, you don't really need to see all steps of the drawing.

To do this you need to call . Once you call this command, you will only make a drawing every
steps and draw the steps in one time. Remark that when you call at some point, you might
want to call at the end (indeed by calling it at the end, you make sure that every step get drown).

Alternatively, you can call at the end.

𝐭𝐫𝐚𝐜𝐞𝐫(𝑁) 𝑁

𝑁 𝐭𝐫𝐚𝐜𝐞𝐫(𝑁)

𝐭𝐫𝐚𝐜𝐞𝐫(1)

𝐮𝐩𝐝𝐚𝐭𝐞()

In [1]:

from turtle import *

from random import randrange as rrange

#Here we draw some random walk on the plane at normal speed
scale=10
def RW():
 x=rrange(0,2)
 y=rrange(0,2)
 return (scale*(2*x-1),scale*(2*y-1))

Nstep=500
x=2
y=3
clearscreen()
tracer(30)
for u in range(0,Nstep):
 (a,b)=RW()
 x=x+a
 y=y+b
 setpos(x,y)
tracer(1) # After you used tracer(N) do not forget to call tracer(1) because you
 # you may have some steps remaining (if you do not reach N steps you d
on't draw)

The function can also take another argument which is the delay (in milisecond).

By calling you basically make sure that you draw everything in one single step. Remark
that it might take some time to draw the figure if the figure is complicated.

𝐭𝐫𝐚𝐜𝐞𝐫

𝐭𝐫𝐚𝐜𝐞𝐫(10000000)

I just want to add that even though the animation of the turtle was meant for kids to understand "what the
turtle is doing", it really helps with debugging your code. Make sure that when you draw complicated objects
(fractals for instance, see the next section), you begin with the animation (for small values of the parameters
of course). By doing this, you will be able to debug your code. Once your code works, you can of course
increase the speed of your script by using the function.𝐭𝐫𝐚𝐜𝐞𝐫

28/10/2019 Lecture+7+Visualization.+Turtle+and+Pyplot

localhost:8888/nbconvert/html/Dropbox (ICR)/ICR Team Folder/Education/Int2Prog/Lecture 7/Lecture%2B7%2BVisualization.%2BTurtle%2Band%2BPypl… 11/26

A more complete example : the Von Koch snowflake
The Von Koch snowflake is a well known fractal figure. It can be described easily by an iterative process.

First, we define a transformation to be applied to any segment. Given a segment , divides it into
 identical segments of length (i.e.). Erase the middle subsegment of and draw

instead a segment of length leaving from the end of the first subsegment with an angle of degrees and
from there a second segment going to the beginning of the third subsegment of (use a drawing). It is
straightforward to see that both new segments with the erased segment form an equilateral triangle.

The -th Von Koch snowflake for can be constructed following these steps :

Step 1. Draw an equilateral triangle.
Step 2. For each segment in your figure, apply the transformation VK.
Step 3. If you did not do Step 2 times, go to Step 2, else you are done.

𝑉 𝐾 [𝐴, 𝐵]

3 ℓ ℓ = 𝑑(𝐴, 𝐵)/3 [𝐴, 𝐵]

ℓ 60

[𝐴, 𝐵]

𝑁 𝑁 ≥ 1

𝑁

28/10/2019 Lecture+7+Visualization.+Turtle+and+Pyplot

localhost:8888/nbconvert/html/Dropbox (ICR)/ICR Team Folder/Education/Int2Prog/Lecture 7/Lecture%2B7%2BVisualization.%2BTurtle%2Band%2BPypl… 12/26

In [6]:

from turtle import *

Von Koch
#Our beginning equilateral triangle will have a side of length 400
clearscreen()
speed(0)
N=int(input("At which level do you want to construct the Von Koch snowflake?"))

#Here is the base of the algorithm.
#We create the data that we will use to generate our moves
#We have two different moves :
#- The move forward
#- The turning around
#For a given N, the move forward will always be of Length 400/3^N
#The turning around needs to be recorded with their angles.

#Here is what we get at level 0
AuxList=[0,'120',0,'120',0]
This list will later be interpreted as
We make a move forward of 400 (400/3^0)
We turn by 120 degree
We make a move forward of 400 (400/3^0)
We turn by 120 degree
We make a move forward of 400 (400/3^0)
We turn by 120 degree

for x in range(0,N): #For a given x, we go from the level x to level x+1
 AuxAuxList=[] # Will be AuxList at level x+1
 for ind in range(0,len(AuxList)):
 if AuxList[ind]==x: #Every time we come across a move forward a
t level x
 #We divide it in 7 moves
 AuxAuxList.append(x+1)# move forward at level x+1
 AuxAuxList.append('-60')# Turn by -60 degrees
 AuxAuxList.append(x+1)#move forward at level x+1
 AuxAuxList.append('120')# Turn by 120 degrees
 AuxAuxList.append(x+1)#move forward at level x+1
 AuxAuxList.append('-60')# Turn by -60 degrees
 AuxAuxList.append(x+1)#move forward at level x+1
 else:
 AuxAuxList.append(AuxList[ind]) #If not a move forward then keep the
record.
 AuxList=AuxAuxList #Replace the x-th level by the x+1-th.

#Now we draw the figure
penup()
setpos(-100,-100) # We begin at (-100,-100)

Length=400/3**N # We compute the caracteristic length of the drawing.

28/10/2019 Lecture+7+Visualization.+Turtle+and+Pyplot

localhost:8888/nbconvert/html/Dropbox (ICR)/ICR Team Folder/Education/Int2Prog/Lecture 7/Lecture%2B7%2BVisualization.%2BTurtle%2Band%2BPypl… 13/26

pendown()
speed(0)
for x in AuxList:
 if type(x)==type(3): #Check if x is an integer.
 forward(Length)#move forward
 else:
 left(int(x))#Else it is a turn around
print(AuxList)

You can have even be more creative with the animation see the following script.

At which level do you want to construct the Von Koch snowflake?2
[2, '-60', 2, '120', 2, '-60', 2, '-60', 2, '-60', 2, '120', 2, '-6
0', 2, '120', 2, '-60', 2, '120', 2, '-60', 2, '-60', 2, '-60', 2,
'120', 2, '-60', 2, '120', 2, '-60', 2, '120', 2, '-60', 2, '-60',
2, '-60', 2, '120', 2, '-60', 2, '120', 2, '-60', 2, '120', 2, '-6
0', 2, '-60', 2, '-60', 2, '120', 2, '-60', 2, '120', 2, '-60', 2,
'120', 2, '-60', 2, '-60', 2, '-60', 2, '120', 2, '-60', 2, '120',
2, '-60', 2, '120', 2, '-60', 2, '-60', 2, '-60', 2, '120', 2, '-6
0', 2]

28/10/2019 Lecture+7+Visualization.+Turtle+and+Pyplot

localhost:8888/nbconvert/html/Dropbox (ICR)/ICR Team Folder/Education/Int2Prog/Lecture 7/Lecture%2B7%2BVisualization.%2BTurtle%2Band%2BPypl… 14/26

In [51]:

from turtle import *
reset()
speed(0)
penup() # If you don't do this you will write behind the turtle
setpos(-100,-100)
hideturtle()
#This line of code hide "the turtle" it increases the speed of drawing
N=0
def VKsnowFlake():
 tracer(1000000000) #Hold it
 global N
 #Construction of the list
 AuxList=[0,'120',0,'120',0,'120']
 for x in range(0,N):
 AuxAuxList=[]
 for ind in range(0,len(AuxList)):
 if AuxList[ind]==x:
 AuxAuxList.append(x+1)
 AuxAuxList.append('-60')
 AuxAuxList.append(x+1)
 AuxAuxList.append('120')
 AuxAuxList.append(x+1)
 AuxAuxList.append('-60')
 AuxAuxList.append(x+1)
 else:
 AuxAuxList.append(AuxList[ind])
 AuxList=AuxAuxList
 Length=400/3**N
 clear()
 pendown()
 for x in AuxList:
 if type(x)==type(3):
 forward(Length)
 else:
 left(int(x))
 N+=1
 penup()
 setpos(80,-250)
 write("Von Koch snowflake at level {}".format(N), \
 move=False, align="left", font=("Arial", 16, "normal"))
 setpos(-100,-100)
 tracer(1) #Draw
for x in range(0,8):
 speed(0) #
 VKsnowFlake() # Draw the x-th snowflake
 speed(5) #
 right(360)

28/10/2019 Lecture+7+Visualization.+Turtle+and+Pyplot

localhost:8888/nbconvert/html/Dropbox (ICR)/ICR Team Folder/Education/Int2Prog/Lecture 7/Lecture%2B7%2BVisualization.%2BTurtle%2Band%2BPypl… 15/26

Pyplot in matplotlib
Instead of drawing, you might want to plot data.

To do this, you should use the module .

In the sequel we will always denote it .

It is strongly recommanded to use the (as) module as a tool to build data to use .

The documentation can be read here : https://matplotlib.org/api/pyplot_summary.html#
(https://matplotlib.org/api/pyplot_summary.html#).

𝐦𝐚𝐭𝐩𝐥𝐨𝐭𝐥𝐢𝐛.𝐩𝐲𝐩𝐥𝐨𝐭

𝐩𝐥𝐭

𝐧𝐮𝐦𝐩𝐲 𝐧𝐩 𝐩𝐲𝐩𝐥𝐨𝐭

In [52]:

import numpy as np
from matplotlib import pyplot as plt

How to plot a few points ?
Here we just see how to draw points with the command. This command can have as many arguments
as you want and has keyword arguments as well. The basic call is given by :

where and are lists of points with the same number of elements. You will draw the points
 linked by a blue line. You will automatically have a frame with a -label and a -label,

properly scaled.

If you only gives one list as an argument, plot will consider it as a -list and will draw the points .

𝐩𝐥𝐨𝐭

𝐩𝐥𝐨𝐭(𝐿𝑥, 𝐿𝑦)

𝐿𝑥 𝐿𝑦

(𝐿𝑥[𝑖], 𝐿𝑦[𝑖]) 𝑥 𝑦

𝐿 𝑦 (𝑖, 𝐿[𝑖])

In [3]:

import numpy as np
from matplotlib import pyplot as plt

plt.plot([0,4,3,2],[1, 2, 3, 4]) # Wait there is no graphic there.

In [5]:

plt.show() #Ok, you need to ask to python to show the plot

You can change the style of drawing with a string. A priori, the style is given by meaning that you draw
in blue with a link between the points. You should you want to draw orange square without link between
them, you should enter 'gs' (for reen and quare).

𝑏′ −′

𝐠 𝐬

Out[3]:

[<matplotlib.lines.Line2D at 0x11f7d1890>]

https://matplotlib.org/api/pyplot_summary.html#

28/10/2019 Lecture+7+Visualization.+Turtle+and+Pyplot

localhost:8888/nbconvert/html/Dropbox (ICR)/ICR Team Folder/Education/Int2Prog/Lecture 7/Lecture%2B7%2BVisualization.%2BTurtle%2Band%2BPypl… 16/26

In [58]:

plt.plot([0,4,3,2],[1, 2, 3, 4],'gs')
plt.show()

You can build different datas on the same plot.

In [6]:

plt.plot([0,4,3,2],[1, 2, 3, 4],'b-',[1,3,2,4],[1, 2, 3, 4],'bo') # Here I show
the points
#The first three arguments are understood as one single set of points
plt.show()

28/10/2019 Lecture+7+Visualization.+Turtle+and+Pyplot

localhost:8888/nbconvert/html/Dropbox (ICR)/ICR Team Folder/Education/Int2Prog/Lecture 7/Lecture%2B7%2BVisualization.%2BTurtle%2Band%2BPypl… 17/26

In [7]:

plt.plot([0,4,3,2],[1, 2, 3, 4],'b-')
plt.plot([1,3,2,4],[1, 2, 3, 4],'bo') # You can add the data calling twice the
plot function
plt.show()

You can add some information to the plot such as a title, a label to the -axis, the -axis.

You can also impose the size of the graph.

𝑥 𝑦

28/10/2019 Lecture+7+Visualization.+Turtle+and+Pyplot

localhost:8888/nbconvert/html/Dropbox (ICR)/ICR Team Folder/Education/Int2Prog/Lecture 7/Lecture%2B7%2BVisualization.%2BTurtle%2Band%2BPypl… 18/26

In [8]:

plt.plot([0,4,3,2],[1, 2, 3, 4],'b-o')
plt.title("Nothing interesting")
plt.xlabel("boring x-axis")
plt.ylabel("boring y-axis")
plt.show()
plt.plot([0,4,3,8],[1, 2, 7, 4],'g-o')
plt.show() # Once you call show(), it erases all the data in your plot.

28/10/2019 Lecture+7+Visualization.+Turtle+and+Pyplot

localhost:8888/nbconvert/html/Dropbox (ICR)/ICR Team Folder/Education/Int2Prog/Lecture 7/Lecture%2B7%2BVisualization.%2BTurtle%2Band%2BPypl… 19/26

In [62]:

plt.figure(1, figsize=(4, 3)) # Merge everything in one figure of a given size
plt.subplot(211) # This command allows you to draw multiple plots in the figure

plt.plot([0,8,3,2],[1, 2, 3, 4],'b-')
plt.plot([0,8,3,2],[1, 2, 3, 4],'bo')
plt.title("Nothing interesting")
plt.xlabel("boring x-axis")
plt.ylabel("boring y-axis")

plt.subplot(212)

plt.plot([0,4,3,8],[1, 2, 7, 4],'g-')
plt.plot([0,4,3,8],[1, 2,7, 4],'co')

plt.show()

How to construct colors ?
In all these drawings, it is nice to be able to draw different colors.

Python allows you to really draw your own colors. Go to
https://matplotlib.org/gallery/color/named_colors.html#sphx-glr-gallery-color-named-colors-py
(https://matplotlib.org/gallery/color/named_colors.html#sphx-glr-gallery-color-named-colors-py) to see the
whole spectrum of built-in colors.

In general, a color can be constructed out of a RGB tuple. Namely you enter the level (as a float between
and) of red, green and blue.

0

1

https://matplotlib.org/gallery/color/named_colors.html#sphx-glr-gallery-color-named-colors-py

28/10/2019 Lecture+7+Visualization.+Turtle+and+Pyplot

localhost:8888/nbconvert/html/Dropbox (ICR)/ICR Team Folder/Education/Int2Prog/Lecture 7/Lecture%2B7%2BVisualization.%2BTurtle%2Band%2BPypl… 20/26

In [9]:

R=float(input('red : ')) # Enter a float between 0 and 1 (red)
G=float(input('green : ')) # Enter a float between 0 and 1 (green)
B=float(input('blue : ')) # Enter a float between 0 and 1 (blue)
N=100
for y in range(0,N):
 scale=y/N
 plt.plot([0,1],[scale,scale],color=(scale*R,scale*G,scale*B)) # Draw a line
with a given color as a RGB tuple
 #Remark the keyword argument color to draw with the color you want
plt.ylabel("Scale")
plt.show()

How to plot functions?
In Python, you don't really plot functions , you draw a list of (a big numbers of) linked points instead.
In order to do this in an efficient way, you should use the module that we have imported as .

Indeed, by calling , you create an array called which
contains floating numbers evenly spaced between and (is a boolean keyword argument
that says if and should be contained in it or not).

Of course, by asking a big number of points (namely a big) we increase the accuracy of our drawing but
we also increase the time of computation.

Then if you want to plot some function , you only need to call and then . Indeed the
call will create an array whose elements are for in .

In the next example, we draw .

𝑝𝑒𝑟 𝑠𝑒

𝐧𝐮𝐦𝐩𝐲 𝐧𝐩

𝑥 = 𝐧𝐩. 𝑙𝑖𝑛𝑠𝑝𝑎𝑐𝑒(𝑚, 𝑀, 𝑁, 𝑒𝑛𝑑𝑝𝑜𝑖𝑛𝑡 = 𝑇𝑟𝑢𝑒) 𝑥

𝑁 𝑚 𝑀 𝑒𝑛𝑑𝑝𝑜𝑖𝑛𝑡

𝑚 𝑀

𝑁

𝑓 𝑦 = 𝑓(𝑥) 𝐩𝐥𝐨𝐭(𝑥, 𝑦)

𝑦 = 𝑓(𝑥) 𝑓(𝑎) 𝑎 𝑥

𝑥 ↦ 3 exp(−𝑥) + 𝑥3

red : 1
green : 1
blue : 0

28/10/2019 Lecture+7+Visualization.+Turtle+and+Pyplot

localhost:8888/nbconvert/html/Dropbox (ICR)/ICR Team Folder/Education/Int2Prog/Lecture 7/Lecture%2B7%2BVisualization.%2BTurtle%2Band%2BPypl… 21/26

In [69]:

x=np.linspace(0,1,3)
y=np.exp(x)
print(x)
print(y)

In [14]:

import numpy as np
from matplotlib import pyplot as plt

x = np.linspace(0.01, 5, 200, endpoint=True)
y=np.log(x)
plt.plot(x, y)
plt.xlabel("x")
plt.ylabel("ln(x)")
plt.show()

[0. 0.5 1.]
[1. 1.64872127 2.71828183]

28/10/2019 Lecture+7+Visualization.+Turtle+and+Pyplot

localhost:8888/nbconvert/html/Dropbox (ICR)/ICR Team Folder/Education/Int2Prog/Lecture 7/Lecture%2B7%2BVisualization.%2BTurtle%2Band%2BPypl… 22/26

In [15]:

import numpy as np
from matplotlib import pyplot as plt

x = np.linspace(-4, 3, 200, endpoint=True)
y=3*np.exp(-x)+x**3
plt.plot(x, y)
plt.xlabel("x")
plt.ylabel("3exp(-x)+x^3")
plt.show()

28/10/2019 Lecture+7+Visualization.+Turtle+and+Pyplot

localhost:8888/nbconvert/html/Dropbox (ICR)/ICR Team Folder/Education/Int2Prog/Lecture 7/Lecture%2B7%2BVisualization.%2BTurtle%2Band%2BPypl… 23/26

In [16]:

#Here are some examples where we ask for a few points only
for u in range(1,6):
 x = np.linspace(-np.pi, 7, 3*u, endpoint=True) # linspace is a very convenie
nt tool to build data set.
 y = 3*np.exp(-x)+x**3
 plt.plot(x, y)
 plt.plot(x, y,'bo') #We also draw the points
 plt.title("with {} points".format(3*u))
 plt.show()

28/10/2019 Lecture+7+Visualization.+Turtle+and+Pyplot

localhost:8888/nbconvert/html/Dropbox (ICR)/ICR Team Folder/Education/Int2Prog/Lecture 7/Lecture%2B7%2BVisualization.%2BTurtle%2Band%2BPypl… 24/26

28/10/2019 Lecture+7+Visualization.+Turtle+and+Pyplot

localhost:8888/nbconvert/html/Dropbox (ICR)/ICR Team Folder/Education/Int2Prog/Lecture 7/Lecture%2B7%2BVisualization.%2BTurtle%2Band%2BPypl… 25/26

How to plot histograms?
A histogram is a way to display some data. Let's say you have a sample of measures that you want to
study.

28/10/2019 Lecture+7+Visualization.+Turtle+and+Pyplot

localhost:8888/nbconvert/html/Dropbox (ICR)/ICR Team Folder/Education/Int2Prog/Lecture 7/Lecture%2B7%2BVisualization.%2BTurtle%2Band%2BPypl… 26/26

In [21]:

import matplotlib.pyplot as plt

x = [1,1,2,3,3,5,7,8,9,10,
 10,11,11,13,13,15,16,17,18,18,
 18,19,20,21,21,23,24,24,25,25,
 25,25,26,26,26,27,27,27,27,27,
 29,30,30,31,33,34,34,34,35,36,
 36,37,37,38,38,39,40,41,41,42,
 43,44,45,45,46,47,48,48,49,50,
 51,52,53,54,55,55,56,57,58,60,
 61,63,64,65,66,68,70,71,72,74,
 75,77,81,83,84,87,89,90,90,91
]

plt.hist(x, bins=10)
plt.show()

