
Lecture+6+Lambdas+and+Classes

October 25, 2019

1 Introduction to programming

1.0.1 Lecture 6: lambda and classes

Lecturers: Xavier Parent (xavier.parent@uni.lu) and Giovanni Casini (giovanni.casini@uni.lu)
Revamped version of material from Clément Guérin

2 Lambda

2.1 A very short overview on Lambda-calculus

So-called lambda-calculus (denoted λ-calculus) is a logical system for manipulating and reasoning
about functions and the way in which they combine. It was invented in 1930 by Church as part of
a theory intended as a foundation for mathematics.

The λ-calculus has been and is still widely used in Computer Science.
One of the most original achievement of λ-calculus is the mechanisation of a (mathematical)

proof in a computer. See Isabelle/HOL or the COQ proof assistant
A vast collection of Isabelle examples and applications is available on the web site “Archive of

formal proofs” (link below).
Ourselves at CSC we have been collaborating with Benzmueller, whose theorem-prover Leo 3

won the last CASC-27 world championship in LTB division (and was runner up in THF division).
References

• Short English introduction to λ-calculus: http://www.cs.bham.ac.uk/~axj/pub/papers/lambda-
calculus.pdf

• Isabelle/HOL prof assistant: https://isabelle.in.tum.de/
• Archive of formal proof: https://www.isa-afp.org/
• home page of C. Benzmueller: http://page.mi.fu-berlin.de/cbenzmueller/
• COQ: https://coq.inria.fr

Formally, a typical λ-term in λ-calculus: λx.t where x is a variable and t is a term that might
contain the variable x. λx.t** represents the function sending x to t(x).

One advantage of the lambda notation is that it allows us to easily talk about higher-order
functions, i.e., functions whose inputs and/or outputs are themselves functions.

t o t is written as λx.t(t(x)).
The function sending t to t o t is written as λtλx.t(t(x)).

1

2.2 “Lambda-calculus” in Python

In Python, there is nothing which could be called λ-calculus, but there is a command lambda
that you can use to define a function. The formalism goes like this :

lambda x : expression containing x
This is the function sending x to the expression containing x. Therefore writing the following

somefunc = lambda x : expression containing x
is equivalent to

def somefunc(x) :
return expression containing x

No restrictions on the number of arguments * lambda can receive zero, one, two or more argu-
ments * another function can be passed as an argument too. * Default value arguments are possible
too. However, you can override the default values by passing new values as the arguments.

There is no formal difference between the functions defined using the lambda command and
those using the def command. The difference is in the ergonomy: * A lambda expression is more
compact, and so the code is clearer * A lambda expression does not need a name. For anonymous
functions, lambda is preferred. * With a lambda expression, the code is quicker to run for the
interpretor

In [1]: squaring=lambda x: x*x #Computing the square of a number
squaring(9)

Out[1]: 81

In [2]: def squaring2(x): #Computing the square of a number
return x*x

print(squaring2(100)) # Same result as for squaring(100)
print(type(squaring)) # Type : function
print(type(squaring2)) # same type

10000
<class 'function'>
<class 'function'>

In [3]: # Explain the different lines of codes.

#I want to know the value of 2+3
print(2+3)
#OK

#Composition of two functions
print((lambda x : lambda y: x+y)(2)(3))
#
#(lambda x : lambda y: x+y)(2) is a function sending y to 2+y

#A single function with two variables
print((lambda x,y : x+y)(2,3))
#(lambda x,y : x+y) is one function with two arguments

2

5
5
5

In [4]: #Examples of lambda terms

Id=(lambda x:x) # identity function
Id(2)

fst=(lambda x,y: x) # selection function 1
fst(3,4)

snd=(lambda x,y : y) # selection function 2
snd(3,4)

cst=(lambda x : True) # constant function returning boolean value true
cst(2)

cst=(lambda x : 5) # constant function returnung 5
cst(2)

Out[4]: 5

In []: #composition of functions

f=lambda x : x * 2
g=lambda x : x+1

fog=lambda x : f(g(x))
fog(10)

3 arguments

multi = lambda x, y, z : x * y * z ## lambda
print(multi(5, 2, 6))

In []: # Defaults argument values

add = lambda x = 10, y = 20, z = 30 : x + y + z
print(add()) # 10 + 20 + 30

multi = lambda x = 10, y = 20, z = 30 : x * y * z
print(multi()) # 10 * 20 * 30

sub = lambda x = 10, y = 45: y - x
print(sub()) # 45 - 10

In []: #However, you can override the default values by passing new values as the arguments.

3

add = lambda x = 10, y = 20, z = 30 : x + y + z
print(add(12, 14, 16)) # 12 + 14 + 16
print(add(75, 126)) # 75 + 126 + 30
print(add(222)) # 222 + 20 + 30
print(add()) # 10 + 20 + 30

print("Multiplication Values")
multi = lambda x = 10, y = 20, z = 30 : x * y * z
print(multi(2, 4, 5)) # x = 2, y = 4, z = 5
print(multi(100, 22)) # x = 100, y = 22, z = 30
print(multi(9)) # x = 9, y = 20, z = 30
print(multi()) # 10 * 20 * 30

In []: # We define a map "timing" sending n to the map "x goes to n*x"

With an auxiliary function
def timing(n):

def auxiliaryfunction(x): # Its name will never be heard of again
return n*x

return auxiliaryfunction

With a lambda function
def timing2(n):

return lambda x : n*x # Simpler and more explicit

#nested lambda functions
timing3=lambda n :lambda x: n*x

Each of timing(n), timing2(n) and timing3(n) is the function sending x goes to n*x

In []: print(timing(5)('Example '))
print(timing2(5)('Example '))
print(timing3(5)('Example ')) # They all do the same thing!

2.3 List/Iterator manipulation with lambda command

In Python, you have a few built-in functions that can be used to construct objects out of a function
and a container (or an iterator). We are going to see each of them, filter, reduce, map. The function
you put as an argument of these functions is typically a lambda-type function.

Here a summary of what the three commands do:

• filter: it filters out elements in list
• reduce: it applies a rolling computation to sequential values in a list
• map: it applies the same operation to all the elements in a list

2.3.1 filter command

We have already seen an example of this command. This is almost self explanatory. The call
filter(f unc, L) will return the iterator generating the list of elements L[i] of L such that f unc(L[i])

4

is True.
Whatever might be the type of the container in the argument, you always end up with a gen-

erator (not a list).

2.3.2 reduce command

The reduce command is contained in the functools package. In Python 2 it was a built-in function
but to avoid conflict with other functions (apparently we “reduce” a lot of things in Python), the
choice has been made to make it a built-in function in a specific module.

In []: from functools import reduce

The reduce command takes as an argument a two arguments function f unc and a list/iterator
and returns f unc(f unc(. . . , f unc(f unc(L[0], L[1]), L[2]), . . . , L[len(L)− 2], L[len(L)− 1]).

It is a really useful function for performing some computation on a list and returning the result.
It applies a rolling computation to sequential pairs of values in a list. For example, if you need to
compute the product of a list of integers.

Remark: if f unc is something like x, y 7→ x + y and the elements of your list L are integers, you
get something like :

reduce(f unc, L) =
len(L)−1

∑
i=0

L[i].

There is no reason for the function f unc to be associative (i.e. f unc(f unc(x, y), z) =
f unc(x, f unc(y, z))) nor commutative (i.e. f unc(x, y) = f unc(y, x)). In this case, the first formula
I gave with the dots explain exactly in which order is evaluated reduce. Equivalently :

reduce(f unc, L) = f unc(reduce(f unc, L[0 : len(L)− 1], L[len(L)− 1])

2.3.3 map command

The map command may is the most useful among these three commands. You use it when you
want to apply the same function to all the elements of a list. map takes as argument a regular
function f unc or a lambda expression and a list/iterator L and returns the generator of the list
[f unc(L[i]) | i ∈ {0, . . . , len(L)− 1}].

In []: #An example dealt with functions or lambdas.

#Make the list of integers from 1 to 100 which are divisible by 13.

#1 Using definition of a function
def Isdivisibleby13(x):

return x%13==0
aux=filter(Isdivisibleby13,range(1,100))

#print(aux) # the result of a filter is an iterator and not a list
print(list(aux))# if you want to see the elements, you can just turn it into a list

#2 You could also use lambda operator

5

aux2=filter(lambda x: x%13==0, range(1,100)) # What this line means is clearer than the former one.

#print(aux==aux2) # The iterator are not the same
#print(list(aux)==list(aux2)) # The lists are the same Xav: why false outputed?
print(list(aux2))

In []: # Could you explain the result of this call?
for x in filter(lambda x: x%13, range(1,50)):

print(x,end=" ")
lambda x: x%13
if x%13==0 then it is evaluated as False
if x%13!=0 then it is evaluated as True

In []: from functools import reduce
print(reduce((lambda x ,y: x-y), [1, 2, 3, 4]))
print(reduce((lambda x ,y: y-x), [1, 2, 3, 4]))

In []: from functools import reduce
print(reduce((lambda x ,y,z: x+y-z), [1, 2, 3, 4]))

In []: from functools import reduce
print(reduce((lambda x, y: x * y),[1, 2, 3, 4]))

In []: This is the same as using a for loop over the list.

In []: product = 1
list = [1, 2, 3, 4]
for num in list:

product = product * num
print(product)

In []: # Why do we always get 0 here?
from functools import reduce
N=int(input('Enter a positive integer here : '))
#print(reduce((lambda x,y:x+y),range(0,1)))
print(reduce(lambda x,y:x+y,range(0,N+1)-N*(N+1)/2)

In []: ## Map with a usual function
numbers=[1,3,5,9]
def square(x):

return x**2

print(list(map(square,numbers)))

In []: ## Map with lambda expression

numbers=[1,3,5,9]

print(list(map(lambda x: x**2,numbers)))

6

In []: # Example, we compute the different values of (x*x)-10 for x=1,...,100
for x in map(lambda x : x*x-10,range(1,101)):

print(x, end=" ")

In []:

3 Classes

This second part is meant to complement the material on classes presented last time. These intro-
duce a bit of a new (complicated) syntax.

3.1 Basic ingredients

• Variables (attributes)
• Methods (including magic ones)
• Overloaded operators

3.2 Inheritance and diamond problem

3.3 Decorators

3.3.1 Variable (attribute)

In the context of classes, a variable is more or less the same as an attribute. A class can include
both class variables and instance variables. The class variables are defined as part of the class
itself, while instance variables are defined as part of methods.

Class variables are initialized immediately after the class name. class variables are shared by
all instances of the class.

3.3.2 Methods

Methods are simply another kind of function that reside in classes. You create and work with
methods in precisely the same way that you do functions, except that methods are always associ-
ated with a class (you don’t see freestanding methods as you do with functions). You can create
two kinds of methods:

• class methods: associated with the class itself (no self argument)
• instance methods: associated with the instances you created (self required as a first argu-

ment)

(There is a third kind of method, called static method)

3.3.3 Methods with variable number of arguments

Sometimes you create methods that can take a variable number of arguments. “Variable” in the
sense that the exact number becomes known only as they are passed. Handling this sort of situ-
ation is something Python does well. Here are the two kinds of variable arguments that you can
create: + *args: the method takes a variable number of positional arguments. + **kwargs: the
method takes a variable number of keyword arguments.

7

3.3.4 Init method and self

• init is basically a function which will “initialize”/“activate” the properties of the class for a
specific object, once created and matched to the corresponding class

• self represents that object which will inherit those properties

The Init method may take a number of parameters other than the self. This is what makes the
different instances of the class unique, and how you distinguish them.

3.3.5 Magic methods

Each class also comes with a set of “magic” methods. A magic method is one that begins and ends
with a double underscore.

They are not meant to be invoked directly by the user, but the invocation happens internally
from the class on a certain action. For example, when you add two numbers using the + operator,
internally, the add() method is called. This is how the + can be applied to different types.

To list all the magic methods a class has you type “dir(name-of-the-class)”.

3.3.6 Operator overloading

This refers to the action of modifying the default meaning of an operator to make it. There are
four main types of operators: arithmetical operators ; comparison operators ; assignment operator
; boolean operators.

All these operators are implemented using a magic method. So in order to make the over-
loaded behaviour available in your own custom class, the corresponding magic method should be
overridden.

In the example below we redefine the add magic method so it applies to points in a 2-D coor-
dinate system.

In [2]: # class variables

class Shark:
animal_type = "fish"

instance variables

class MyClass:
def DoAdd(self, Value1=0, Value2=0): # Value1 and Value2 are instance variables

Sum = Value1 + Value2 # Sum is an instance variable too
print("The sum of {0} plus {1} is {2}.".format(Value1, Value2, Sum))

x=MyClass()
x.DoAdd(3,2)

The sum of 3 plus 2 is 5.

In [10]: # class variables can be changed

8

class Shark:
animal_type = "fish" # Class variable initialized

Shark.animal_type # accessing the class variable
Shark.animal_type = "bird" # Class variable re-initialized
Shark.animal_type

Out[10]: 'bird'

In [5]: # Two kinds of methods

class MyClass:

def SayHello(): # class method
print("Hello from the class")

def SayHello2(self): # instance method
print("Hello from the instance!")

MyClass.SayHello() # Calling the class method
MyInstance=MyClass() # Creating an instance
MyInstance.SayHello2() # Calling the instance method
#MyClass.SayHello2()

Hello from the class
Hello from the instance!

In [7]: # variable argument

class MyClass:
def PrintList1(*args):

for Count, Item in enumerate(args):
print("{0}. {1}".format(Count, Item))

def PrintList2(**kwargs):
for Key, Value in kwargs.items(): # items() returns a list of dict's (key, value) tuple pairs.

print("{0} likes {1}".format(Key, Value))
MyClass.PrintList1("Red", "Blue", "Green")
MyClass.PrintList2(George="Red", Sue="Blue",Zarah="Green")

0. Red
1. Blue
2. Green
George likes Red
Sue likes Blue
Zarah likes Green

9

In [64]: # init and self

class Box:

def __init__(self, width, height):
self.width = width
self.height = height

def area(self):
return self.width * self.height

Create an instance of Box.
x = Box(10, 2)

Print area.
print(x.area())

20

TypeError Traceback (most recent call last)

<ipython-input-64-b02b3b559224> in <module>
17 print(x.area())
18

---> 19 Box.__getattribute__(x)

TypeError: expected 1 arguments, got 0

In []: ### magic method

x,y=2,3

#x+y
x.__add__(y)

In [12]: ### getting to know your class

class test:
print("This is just me, I am a package--take it or leave it")

dir(test) # to print out all the magic functions a class has

10

This is just me, I am a package--take it or leave it

Out[12]: ['__class__',
'__delattr__',
'__dict__',
'__dir__',
'__doc__',
'__eq__',
'__format__',
'__ge__',
'__getattribute__',
'__gt__',
'__hash__',
'__init__',
'__init_subclass__',
'__le__',
'__lt__',
'__module__',
'__ne__',
'__new__',
'__reduce__',
'__reduce_ex__',
'__repr__',
'__setattr__',
'__sizeof__',
'__str__',
'__subclasshook__',
'__weakref__']

In []: # operator overlaod

class Point: # tries to simulate a point in 2-D coordinate system.
def __init__(self, x, y):

self.x = x
self.y = y

p1 = Point(2,3)
p2 = Point(-1,2)
#print(p1 + p2) # it won't recognize it
print(p1)

In []: # operator overload

class Point:
def __init__(self, x, y):

self.x = x
self.y = y

11

def __str__(self): ## secondary: we change the meaning of str
return "({0},{1})".format(self.x,self.y) # template string, followed by values to fill it in

def __add__(self,other): ## we change the meaning of +
x = self.x + other.x
y = self.y + other.y
return Point(x,y)

p1 = Point(2,3)
p2 = Point(-1,2)
print(p1+p2)
print(p1)

2+3 # outside the class + keeps its usual behavior

In []: class Complex:
def __init__(self, realpart, imagpart):

self.r = realpart
self.i = imagpart

x = Complex(3.0, -4.5)
#x = Complex() # positional arguments required
x.r, x.i

In []: class MyClass:
Greeting = ""
def __init__(self, Name="there"):

self.Greeting = Name + "!"

def SayHello(self):
print("Hello {0}".format(self.Greeting))

Myinstance=MyClass("John")
#Myinstance=MyClass() # default argument used
Myinstance.SayHello()

3.4 Inheritance

3.4.1 Parent vs child class

Say you have already defined a nice class with a lot of methods, overloaded many operators. . . But
now you need a subclass with almost the same methods but with new and more specific things.
Python allows you to do it quite smoothly. Indeed it suffices to call :

class Subclass(Bigclass) :
indented lines of codes
indented lines of codes
indented lines of codes

12

3.4.2 Simple inheritance

By defaults the subclass or child class inherits features of the super class or parent class, adding
new features to it. Of course inheritance goes in one direction only. This results into re-usability
of code. For instance you do not need to initialize an instance of the child class again. (If you do,
this will overwrite the init command in the parent class)

3.4.3 Multiple inheritance

Multiple inheritance is supported. In this case, the child class inherits the features of two (unre-
lated) parent classes. There are issues with the calling of the init of the parent classes (one way to
make it work is shown in the example).

3.4.4 Overriding

A method or attribute of a parent class can be overridden by simply defining in the child class a
method or attibute with the same name and the same sumber of parameters.

If a method is overridden in a class, the original method can still be accessed, but you have to
do it by calling the method directly with the class name, like in the last example below.

In [31]: # Example of simple inheritance

class User: ## parent class

def __init__(self, name):
self.name = name

def printName(self):
print("Name = ",self.name)

class Programmer(User): # child class

def doPython(self): # new to the parent class
print("Programming Python")

brian = User("brian") # INSTANCE OF THE PARENT CLASS
#brian.printName()
#diana = Programmer("Diana") # INSTANCE OF THE CHILD CLASS
#diana.printName() # inherited from parent class
#diana.doPython()
brian.doPython() inheritance does not go upwards

Some useful command

print(issubclass(Programmer,User)) # Allows you to check if a class is a subclass of another class
print(issubclass(User,Programmer))

print(isinstance(diana,Programmer))# Check if some object is an instance of some class
print(isinstance(diana,User)) # it also works with upper classes

13

In [36]: # Multiple inheritance

class User: ## parent class 1

def __init__(self, name):
self.name = name

def printName(self):
print("Name = ",self.name)

class Origin: ## parent class 2

def __init__(self, country):
self.country = country

def printCountry(self):
print("Country=",self.country)

class Programmer(User,Origin): # child class

def __init__(self,name,country): #
User.__init__(self,name) # Calling constructors of parent class 1
Origin.__init__(self,country) # Calling constructors of parent class 2

def doPython(self):
print("Programming Python")

brian = User("brian")
brian.printName()
diana = Programmer("Diana","Luxembourg")
diana.printName() # inherited from parent class 1
diana.printCountry() # inherited from parent class 2
diana.doPython()

Name = brian
Name = Diana
Country= Luxembourg
Programming Python

In [37]: # Simple inheritance overriding

class User: ## parent class

def __init__(self, name):

14

self.name = name

def printName(self):
print("Name = ",self.name)

class Programmer(User): # child class

#def __init__(self, name):
self.name = name

def doPython(self):
print("Programming Python")

def printName(self): ## Overriding the method of the parent class
pass

brian = User("brian")
brian.printName()

diana = Programmer("Diana")
diana.printName() # inherited from parent class, but overriden
diana.doPython()

Name = brian
Programming Python

In [40]: ## overriding a method and changing the number of arguments

class Employee:

def add(self, a, b):
print('The Sum of Two = ', a + b)

class Department(Employee):

#def add(self, a, b, c):
print('The Sum of Three = ', a + b + c)

def add(self, a):
print('The double = ', a + a)

emp = Employee()
emp.add(10, 20)

print('------------')
dept = Department()
#dept.add(50, 130, 90)
dept.add(50)

15

The Sum of Two = 30

The double = 100

In [42]: ## Funny: an overriden method can still be called from within the child class

class Employee:

def message(self):
print('This message is from Employee Class')

class Department(Employee):

def message(self): #overrdiing the parent method
#Employee.message(self) # the overriden method can still be called
super().message() # another way to call the overriden method
print('This Department class is inherited from Employee')

emp = Employee()
emp.message()

print('------------')
dept = Department()
dept.message()

This message is from Employee Class

This message is from Employee Class
This Department class is inherited from Employee

3.5 Diamond problem

Diamond problem (also called the “deadly diamond of the death”) is an ambiguity that arises
when two classes B and C inherit from a class A, and class D inherits from B and C. If there is a
method in A that is overriden by both B and C, but not by D, then which version of the method
does D inherit: that of B or that of C?

It is called Diamond because of the shape of the class diagram.
The Diamond problem is not specific to Python. Any Object Orientated Programming lan-

guage allowing for multiple inheritance faces it.
In AI, the Nixon diamond is a scenario in which default assumptions lead to mutually incon-

sistent conclusions. The scenario is: * usually, Quakers are pacifist * usually, Republicans are not
pacifist * Richard Nixon is both a Quaker and a Republican Since Nixon is a Quaker, one could
assume that he is a pacifist; since he is Republican, however, one could also assume he is not a
pacifist. The problem is how a formal logic of nonmonotonic reasoning should deal with such
cases.

16

3.5.1 Method resolution order

Method Resolution Order or ‘MRO’ in short denotes the way a programming language handles
diamond-like inheritance.

MRO old style (Python 2.2) follow the “naive”, depth-first left-to-right approach : DBAC
MRO new style (Python 2.3 and above) uses so-called C3 linearization algorithm. It often

yields the same outcome as the naive approach, but not always.
You can check the Method Resolution Order of a class diragram. Python provides a mro at-

tribute and the mro() method. With these, you can get the resolution order.
In the Diamond example, the MRO old style is DBAC, while the MRO new style is DBCA. The

outcome is, or is not, the same depending on what each class does (see examples below).

In [44]: # diamond problem and MRO--C3 algorithm vs depth first

class A:
def x(self):

print('I am in A')

class B(A):
def x(self):

print('I am in B')
class C(A):

def x(self):
print('I am in C')

class D(B,C): # order of arguments is important
pass

class D(C,B)

d=D()
d.x()

print(D.__mro__) # Display the lookup order
print(D.mro())

I am in B
(<class '__main__.D'>, <class '__main__.B'>, <class '__main__.C'>, <class '__main__.A'>, <class 'object'>)
[<class '__main__.D'>, <class '__main__.B'>, <class '__main__.C'>, <class '__main__.A'>, <class 'object'>]

In [45]: # diamond problem and MRO-- C3 algorithm vs depth first

class A:
def x(self):

print('I am in A')

class B(A):
pass

class C(A):

17

def x(self):
print('I am in C')

class D(B,C): # order of arguments is important
pass

class D(C,B)

d=D()
d.x()

print(D.__mro__) # Display the lookup order
print(D.mro())

I am in C
(<class '__main__.D'>, <class '__main__.B'>, <class '__main__.C'>, <class '__main__.A'>, <class 'object'>)
[<class '__main__.D'>, <class '__main__.B'>, <class '__main__.C'>, <class '__main__.A'>, <class 'object'>]

3.6 Class decorators

Decorators are a very powerful and useful tool in Python since it allows programmers to modify
the behaviour of a method. Decorators are prefixed with @. We look below at two decorators: the
property and setter decorators.

3.6.1 @property

It makes a method accessible like an attribute in read-only mode. Here is a fun fact about python
classes: If you change the value of an attribute inside a class, the other attributes that are derived
from the attribute you just changed don’t automatically update. You need to make the derived
attribute a method decorated with the @ property.

Note the method is made accessible in read-only mode. All attributes in a Python class are
public by default. Any attribute can be accessed from outside the class environment and modi-
fied. The @Property decorator hence provides a way to encapsulate data.

In [47]: ## The problem property allows to handle

class employee:
def __init__(self, first,last):

self.first=first
self.last=last
self.email= first + last + "@email.com"

a=employee("Marc","Coyle")

In [48]: a.email
a.first="John"
a.first
a.email

18

Out[48]: 'MarcCoyle@email.com'

In [50]: ### property (cont')

class employee:
def __init__(self, first,last):

self.first=first
self.last=last

@property #Read only access as if it was an attribute
def email(self):

return "{}{}@email.com".format(self.first,self.last)

a=employee("Marc","Coyle")
#a.email()

a.first="John"
a.email # the method is now accessible as an attribute in read_only mode and the update is possible

Out[50]: 'JohnCoyle@email.com'

3.7 @setter

You use the @setter decorator to enable the chain of updates in the backward direction, from the
derived attribute to the initial ones. This presupposes that the method is made accessible as a
write attribute.

In [53]: #why we need the setter decorator

class employee:
def __init__(self, first,last):

self.first=first
self.last=last

@property # as before
def email(self):

return "{}{}@email.com".format(self.first,self.last)

@property # new
def fullname(self):

return "{} {}".format(self.first,self.last)

a=employee("Marc","Coyle")
#a.email()

a.first="John"
a.fullname
a.fullname="Martin Theobald" # I am changing the value of the derived attribute
a.first

19

AttributeError Traceback (most recent call last)

<ipython-input-53-01515a2ccb17> in <module>
20 a.first="John"
21 a.fullname

---> 22 a.fullname="Martin Theobald" # I am changing the value of the derived attribute
23 #a.first

AttributeError: can't set attribute

In [56]: ### why we need the setter

class employee:
def __init__(self, first,last):

self.first=first
self.last=last

@property # as before
def email(self):

return "{}{}@email.com".format(self.first,self.last)

@property # new
def fullname(self):

return "{} {}".format(self.first,self.last)

@fullname.setter # new
def fullname(self,name): #name is the value we are trying to set

first,last = name.split(' ') # we split the full name into two
self.first=first # we set the first and last names equals to these values
self.last=last

a=employee("Marc","Coyle")
#a.email()

#a.first="John"
#a.fullname
a.fullname="Martin Theobald" # I am changing the value of the derived attribute
a.first

Out[56]: 'Martin'

20

	Introduction to programming
	Lecture 6: lambda and classes

	Lambda
	A very short overview on Lambda-calculus
	``Lambda-calculus'' in Python
	List/Iterator manipulation with lambda command
	filter command
	reduce command
	map command

	Classes
	Basic ingredients
	Inheritance and diamond problem
	Decorators
	Variable (attribute)
	Methods
	Methods with variable number of arguments
	Init method and self
	Magic methods
	Operator overloading

	Inheritance
	Parent vs child class
	Simple inheritance
	Multiple inheritance
	Overriding

	Diamond problem
	Method resolution order

	Class decorators
	@property

	@setter

